SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jeppesen Jacob) "

Sökning: WFRF:(Jeppesen Jacob)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Catoire, MilSNe, et al. (författare)
  • Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:11, s. E1043-E1052
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise encodes angiopoietin-like 4 (ANGPTL4), an inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. Using a combination of human, animal, and in vitro data, we show that induction of ANGPTL4 in nonexercising muscle is mediated by elevated plasma free fatty acids via peroxisome proliferator-activated receptor-delta, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.
  •  
2.
  • Fritzen, Andreas Mæchel, et al. (författare)
  • ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo. Methods: The effect of injection with recombinant human ApoA-1 (rApoA-1) on glucose tolerance, glucose-stimulated insulin secretion, and glucose uptake into skeletal and heart muscle with and without block of insulin secretion by injection of epinephrine (0.1 mg/kg) and propranolol (5 mg/kg), were investigated in 8 weeks high-fat diet-fed (60E%) wild-type and AMPKα2 kinase-dead mice in the overnight-fasted state. In addition, the effect of rApoA-1 on glucose uptake in isolated skeletal muscle ex vivo was studied. Results: rApoA-1 lowered plasma glucose concentration by 1.7 mmol/l within 3 h (6.1 vs 4.4 mmol/l; p < 0.001). Three hours after rApoA-1 injection, glucose tolerance during a 40-min glucose tolerance test (GTT) was improved compared to control (area under the curve (AUC) reduced by 45%, p < 0.001). This was accompanied by an increased glucose clearance into skeletal (+110%; p < 0.001) and heart muscle (+100%; p < 0.001) and an increase in glucose-stimulated insulin secretion 20 min after glucose injection (+180%; p < 0.001). When insulin secretion was blocked during a GTT, rApoA-1 still enhanced glucose tolerance (AUC lowered by 20% compared to control; p < 0.001) and increased glucose clearance into skeletal (+50%; p < 0.05) and heart muscle (+270%; p < 0.001). These improvements occurred to a similar extent in both wild-type and AMPKα2 kinase-dead mice and thus independently of AMPKα2 activity in skeletal- and heart muscle. Interestingly, rApoA-1 failed to increase glucose uptake in isolated skeletal muscles ex vivo. Conclusions: In conclusion, ApoA-1 stimulates in vivo glucose disposal into skeletal and heart muscle independently of AMPKα2. The observation that ApoA-1 fails to increase glucose uptake in isolated muscle ex vivo suggests that additional systemic effects are required.
  •  
3.
  • Jeppesen, Jacob, et al. (författare)
  • FAT/CD36 is localized in sarcolemma and in vesicle-like structures in subsarcolemma regions but not in mitochondria.
  • 2010
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 51:6, s. 1504-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary aim of the present study was to investigate in which cellular compartments fatty acid trans-locase CD36 (FAT/CD36) is localized. Intact and fully functional skeletal muscle mitochondria were isolated from lean and obese female Zucker rats and from 10 healthy male individuals. FAT/CD36 could not be detected in the isolated mitochondria, whereas the mitochondrial marker F(1)ATPase-beta was clearly detected using immunoblotting. Lack of markers for other membrane structures indicated that the mitochondria were not contaminated with membranes known to contain FAT/CD36. In addition, fluorescence immunocytochemistry was performed on single muscle fibers dissected from soleus muscle of lean and obese Zucker rats and from the vastus lateralis muscle from humans. Costaining against FAT/CD36 and MitoNEET clearly show that FAT/CD36 is highly present in sarcolemma and it also associates with some vesicle-like intracellular compartments. However, FAT/CD36 protein was not detected in mitochondrial membranes, supporting the biochemical findings. Based on the presented data, FAT/CD36 seems to be abundantly expressed in sarcolemma and in vesicle-like structures throughout the muscle cell. However, FAT/CD36 is not present in mitochondria in rat or human skeletal muscle. Thus, the functional role of FAT/CD36 in lipid transport seems primarily to be allocated to the plasma membrane in skeletal muscle.
  •  
4.
  • Nielsen, Niklas, et al. (författare)
  • Targeted Temperature Management at 33 degrees C versus 36 degrees C after Cardiac Arrest
  • 2013
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 369:23, s. 2197-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundUnconscious survivors of out-of-hospital cardiac arrest have a high risk of death or poor neurologic function. Therapeutic hypothermia is recommended by international guidelines, but the supporting evidence is limited, and the target temperature associated with the best outcome is unknown. Our objective was to compare two target temperatures, both intended to prevent fever. MethodsIn an international trial, we randomly assigned 950 unconscious adults after out-of-hospital cardiac arrest of presumed cardiac cause to targeted temperature management at either 33 degrees C or 36 degrees C. The primary outcome was all-cause mortality through the end of the trial. Secondary outcomes included a composite of poor neurologic function or death at 180 days, as evaluated with the Cerebral Performance Category (CPC) scale and the modified Rankin scale. ResultsIn total, 939 patients were included in the primary analysis. At the end of the trial, 50% of the patients in the 33 degrees C group (235 of 473 patients) had died, as compared with 48% of the patients in the 36 degrees C group (225 of 466 patients) (hazard ratio with a temperature of 33 degrees C, 1.06; 95% confidence interval [CI], 0.89 to 1.28; P=0.51). At the 180-day follow-up, 54% of the patients in the 33 degrees C group had died or had poor neurologic function according to the CPC, as compared with 52% of patients in the 36 degrees C group (risk ratio, 1.02; 95% CI, 0.88 to 1.16; P=0.78). In the analysis using the modified Rankin scale, the comparable rate was 52% in both groups (risk ratio, 1.01; 95% CI, 0.89 to 1.14; P=0.87). The results of analyses adjusted for known prognostic factors were similar. ConclusionsIn unconscious survivors of out-of-hospital cardiac arrest of presumed cardiac cause, hypothermia at a targeted temperature of 33 degrees C did not confer a benefit as compared with a targeted temperature of 36 degrees C. (Funded by the Swedish Heart-Lung Foundation and others; TTM ClinicalTrials.gov number, NCT01020916.)
  •  
5.
  • Schnell, Oliver, et al. (författare)
  • CVOT Summit Report 2023 : new cardiovascular, kidney, and metabolic outcomes
  • 2024
  • Ingår i: Cardiovascular Diabetology. - 1475-2840. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5–6, 2024 (http://www.cvot.org).
  •  
6.
  •  
7.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy