SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jia Xueen) "

Sökning: WFRF:(Jia Xueen)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barzegar, Hamid Reza, et al. (författare)
  • Palladium nanocrystals supported on photo-transformed C-60 nanorods : effect of crystal morphology and electron mobility on the electrocatalytic activity towards ethanol oxidation
  • 2014
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 73, s. 34-40
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the synthesis and decoration of high-aspect-ratio crystalline C-60 nanorods (NRs) by functionalized palladium nanoparticles with an average size of 4.78 +/- 0.66 nm. In their pristine form, C-60 NRs suffer from partial damage in the solution-based decoration process resulting in poor crystallinity. However, by modifying the NR surface via in situ photochemical transformation in the liquid state, we are able to prepare highly stable NRs that retain their crystalline structure during the decoration process. Our method thus opens up for the synthesis of highly crystalline nanocomposite hybrids comprising Pd nanoparticles and C-60 NRs. Bys measuring the electron mobility of different C-60 NRs, we relate both the effect of electron mobility and crystallinity to the final electrocatalytic performance of the synthesized hybrid structures. We show that the photo-transformed C-60 NRs exhibit highly advantageous properties for ethanol oxidation based on both a better crystallinity and a higher bulk conductivity. These findings give important information in the search for efficient catalyst support.
  •  
2.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Improved oxygen reduction performance of Pt–Ni nanoparticles by adhesion on nitrogen-doped graphene
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:5, s. 2804-2811
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.
  •  
3.
  • Horvath, Istvan, et al. (författare)
  • Pro-inflammatory S100A9 Protein as a Robust Biomarker Differentiating Early Stages of Cognitive Impairment in Alzheimer's Disease
  • 2016
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 7:1, s. 34-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Pro-inflammatory protein S100A9 was established as a biomarker of dementia progression and compared with others such as Aβ1-42 and tau-proteins. CSF samples from 104 stringently diagnosed individuals divided into five subgroups were analyzed, including nondemented controls, stable mild cognitive impairment (SMCI), mild cognitive impairment due to Alzheimer's disease (MCI-AD), Alzheimer's disease (AD), and vascular dementia (VaD) patients. ELISA, dot-blotting, and electrochemical impedance spectroscopy were used as research methods. The S100A9 and Aβ1-42 levels correlated with each other: their CSF content decreased already at the SMCI stage and declined further under MCI-AD, AD, and VaD conditions. Immunohistochemical analysis also revealed involvement of both Aβ1-42 and S100A9 in the amyloid-neuroinflammatory cascade already during SMCI. Tau proteins were not yet altered in SMCI; however their contents increased during MCI-AD and AD, diagnosing later dementia stages. Thus, four biomarkers together, reflecting different underlying pathological causes, can accurately differentiate dementia progression and also distinguish AD from VaD.
  •  
4.
  • Hu, Guangzhi, et al. (författare)
  • Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell
  • 2014
  • Ingår i: RSC Advances. - : RSC Publishing. - 2046-2069. ; 4:2, s. 676-682
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of easy and environmentally benign synthesis methods of efficient electrocatalysts for use in energy conversion applications motivates researchers all over the world. Here we report a novel and versatile method to synthesize well-dispersed palladium-functionalized ordered mesoporous carbons (Pd/OMCs) at room temperature without any reducing agent by one-pot mixing of tri(dibenzylideneacetone)palladium(0) (Pd2DBA3) and OMCs together in a common N,N-dimethylformamide (DMF) solution. The formation of Pd nanoparticles and their crystallization on the OMC is catalyzed by protons in the solution and can thus be controlled by the solution pH. The complete process and the as-prepared nanocomposite was characterized by UV-spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (HTEM), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The electrocatalytic property of the as-decorated material was examined with cyclic voltammetry (CV). The Pd/OMC composite shows up to two times higher electrocatalytic ability with a significantly better durability towards ethanol and methanol oxidation in alkaline media compared to commercial high surface area conductive carbon black Vulcan XC-72 decorated with equivalent Pd nanoparticles. Our described method provides new insight for the development of highly efficient carbon based nanocatalysts by simple and environmentally sound methods.
  •  
5.
  • Hu, Guangzhi, et al. (författare)
  • Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction
  • 2014
  • Ingår i: Nature Communications. - : Macmillan Publishers Ltd.. - 2041-1723. ; 5, s. Article number: 5253-
  • Tidskriftsartikel (refereegranskat)abstract
    • The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium: tungsten = 1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are similar to 1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions.
  •  
6.
  • Huang, Zhao, et al. (författare)
  • Preparation of gold nanoparticles via anodic stripping of copper underpotential deposition in bulk gold electrodeposition for high-performance electrochemical sensing of bisphenol a
  • 2023
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 28:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.
  •  
7.
  • Jia, Xueen, et al. (författare)
  • Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity
  • 2011
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 414:5, s. 699-712
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical.
  •  
8.
  • Jia, Xueen, et al. (författare)
  • Synthesis of Palladium/Helical Carbon Nanofiber Hybrid Nanostructures and Their Application for Hydrogen Peroxide and Glucose Detection
  • 2013
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 5:22, s. 12017-12022
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostnictures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C-60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M-1 cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 mu M to 2.1 mM with a detection limit of 3.0 mu M (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M-1 cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms.
  •  
9.
  • Segervald, Jonas, et al. (författare)
  • Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering
  • 2022
  • Ingår i: Nano Select. - : John Wiley & Sons. - 2688-4011. ; 3:9, s. 1344-1353
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide-spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub-10 nm plasmonic nanogaps and their formation is assisted by a pre-fabrication of nano-imprinted polymer nano-well arrays. The plasmonic metasurface is optimized to maximize the density of the nano-trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces.We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom-up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things.
  •  
10.
  • Sharifi, Tiva, et al. (författare)
  • Comprehensive study of an earth-abundant bifunctional 3D electrode for efficient water electrolysis in alkaline medium
  • 2015
  • Ingår i: ACS Applied Materials and Interfaces. - Washington : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 7:51, s. 28148-28155
  • Tidskriftsartikel (refereegranskat)abstract
    • We report efficient electrolysis of both water splitting half reactions in the same medium by a bifunctional 3D electrode comprising Co3O4 nanospheres nucleated on the surface of nitrogen-doped carbon nanotubes (NCNTs) that in turn are grown on conductive carbon paper (CP). The resulting electrode exhibits high stability and large electrochemical activity for both oxygen and hydrogen evolution reactions (OER and HER). We obtain a current density of 10 mA/cm(2) in 0.1 M KOH solution at overpotentials of only 0.47 and 0.38 V for OER and HER, respectively. Additionally, the experimental observations are understood and supported by analyzing the Co3O4:NCNT and NCNT:CP interfaces by ab initio calculations. Both the experimental and the theoretical studies indicate that firm and well-established interfaces along the electrode play a crucial role on the stability and electrochemical activity for both OER and HER.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (7)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy