SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jiang Guancong) "

Sökning: WFRF:(Jiang Guancong)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Jian, et al. (författare)
  • Heterogeneous consecutive reaction kinetics of direct oxidation of H2 to H2O2: Effect and regulation of confined mass transfer
  • 2023
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 455
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous catalysts in heterogeneous reactions have played an important role in the modern chemical industry, but it is still challenging to quantitatively describe mass transfer and surface reaction behaviors of reactants in nano-confined space. Direct synthesis of hydrogen peroxide (H2O2) is considered as an attractive alternative to anthraquinone oxidation process, while the confined mass transfer of H2O2 in porous catalysts limits the reactivity. In this work, taking the consecutive reaction of H2O2 synthesis as an example, a quantitative method in modeling the effects of confined mass transfer on the reactivity was studied. More specifically, calorimetry was developed to characterize the confined structures of porous carbon experimentally, the linear nonequilibrium thermodynamics and the statistical mechanics method were further combined. Then, the heterogeneous consecutive reaction kinetics and the Thiele modulus influenced by confined mass transfer were modeled. Consequently, regulation strategies were proposed with the help of theoretical models. The optimized catalyst with biological skeleton carbon support and 0.5 wt% palladium loading shows an excellent catalytic performance. Lastly, for the mesoscience in heterogeneous reaction, the resistance was explored as a quantitative descriptor to compromise in the competition between mass transfer and surface reaction. The mesoscale structures were considered as the dynamic spatiotemporal distribution of substance concentrations, and the resistance minimization multi-scale (RMMS) model was proposed.
  •  
2.
  • Jiang, Guancong, et al. (författare)
  • Critical Role of Carbonized Cellulose in the Evolution of Highly Porous Biocarbon : Seeing the Structural and Compositional Changes of Spent Mushroom Substrate by Deconvoluted Thermogravimetric Analysis
  • 2020
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 0888-5885 .- 1520-5045. ; 59:52, s. 22541-22548
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural optimization of activated carbon (AC) mainly relies on experience, which depends on the intrinsic structure of biochar, processing conditions, and the interplay of both parties. A fundamental understanding of the pore structure evolution related to the intrinsic structure and composition remains a challenge. In this work, spent mushroom substrate, a rapidly growing byproduct of the mushroom cultivation industry, is used as model biomass to prepare AC under CO2 activation. The structure and composition of the AC products with different activation durations were systematically analyzed with several characterization techniques including N2 adsorption–desorption, scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. A multipeak separation method is developed that enables quantitative analysis of carbonized lignin and carbonized cellulose. A peak area ratio parameter is proposed to describe the retention of cellulose. It is revealed that higher retention of carbonized cellulose corresponds to a larger Brunauer–Emmett–Teller (BET) surface area, demonstrating the dominant role of cellulose in the pore structure development process. This work not only provides a qualitative correlation between cellulose and rich porous structure but also offers a new quantitative tool to understand the structure–composition relationship during the pore evolution process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy