SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jiang Yideng) "

Search: WFRF:(Jiang Yideng)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Xiong, Jiantuan, et al. (author)
  • Hypermethylation of endoplasmic reticulum disulfide oxidase 1α leads to trophoblast cell apoptosis through endoplasmic reticulum stress in preeclampsia
  • 2018
  • In: Journal of Cellular Biochemistry. - : Wiley. - 0730-2312 .- 1097-4644. ; 119:10, s. 8588-8599
  • Journal article (peer-reviewed)abstract
    • Abnormal trophoblast cell apoptosis is implicated in the pathogenesis of pregnancy-related disorders including preeclampsia (PE), and endoplasmic reticulum (ER) stress has been considered as a novel pathway in the regulation of cell apoptosis. In this study, we observed that both apoptosis and ER stress are triggered in trophoblast cells under hypoxia as well as in the placenta of PE rats. Quantitative polymerase chain reaction and Western blot analysis showed that the expression of endoplasmic reticulum disulfide oxidase 1α (ERO1α) is suppressed in trophoblast cells under hypoxia due to the hypermethylation of the ERO1α promoter region, and the inhibition of ERO1α expression plays an important role in ER stress and trophoblast cell apoptosis. Furthermore, we found that DNA methyltransferase 1 (DNMT1) is a key methyltransferase for DNA methylation in the regulation of ERO1α expression, and the binding level of DNMT1 to the ERO1α promoter is markedly elevated under hypoxia although DNMT1 expression is inhibited by hypoxia, suggesting that the binding level of DNMT1 to the ERO1α promoter region rather than the DNMT1 expression level contributes to the hypermethylation of ERO1α. Taken together, these results demonstrate that the hypermethylation of ERO1α mediated by increased binding of DNMT1 to the ERO1α promoter leads to trophoblast cell apoptosis through ER stress in the placenta of PE rats, which shed insight into the etiology of PE and might present a validated therapeutic target for the treatment of PE.
  •  
2.
  • Yang, Anning, et al. (author)
  • Homocysteine accelerates hepatocyte autophagy by upregulating TFEB via DNMT3b-mediated DNA hypomethylation
  • 2023
  • In: Acta Biochimica et Biophysica Sinica. - : China Science Publishing & Media Ltd.. - 1672-9145. ; 55:8, s. 1184-1192
  • Journal article (peer-reviewed)abstract
    • Autophagy plays a critical role in the physiology and pathophysiology of hepatocytes. High level of homocysteine (Hcy) promotes autophagy in hepatocytes, but the underlying mechanism is still unknown. Here, we investigate the relationship between Hcy-induced autophagy level and the expression of nuclear transcription factor EB (TFEB). The results show that Hcy-induced autophagy level is mediated by upregulation of TFEB. Silencing of TFEB decreases the level of autophagy-related protein LC3BII/I and increases p62 expression level in hepatocytes after exposure to Hcy. Moreover, the effect of Hcy on the expression of TFEB is regulated by hypomethylation of the TFEB promoter catalyzed by DNA methyltransferase 3b (DNMT3b). In summary, this study shows that Hcy can activate autophagy by inhibiting DNMT3b-mediated DNA methylation and upregulating TFEB expression. These findings provide another new mechanism for Hcy-induced autophagy in hepatocytes.
  •  
3.
  • Zhu, Guangrong, et al. (author)
  • Loss of PI3 kinase association improves the sensitivity of secondary mutation of KIT to Imatinib
  • 2020
  • In: Cell and Bioscience. - : Springer Science and Business Media LLC. - 2045-3701. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Background: KIT mutations are the predominant driver mutations in gastrointestinal stromal tumors (GISTs), and targeted therapy against KIT has improved treatment outcome dramatically. However, gaining secondary mutation of KIT confers drug resistance of GISTs leading to treatment failure. Results: In this study, we found that secondary mutation of KIT dramatically increases the ligand-independent activation of the receptor and their resistance to the often used KIT inhibitor Imatinib in the treatment of GISTs. PI3 kinase plays essential roles in the cell transformation mediated by the primary mutation of KIT. We found that loss of PI3 kinase association, but not the inhibition of the lipid kinase activity of PI3 kinase, inhibits the ligand-independent activation of secondary mutations of KIT, and increases their sensitivity to Imatinib, and loss of PI3 kinase association inhibits secondary mutations of KIT mediated cell survival and proliferation in vitro. The in vivo assay further showed that the growth of tumors carrying secondary mutations of KIT is more sensitive to Imatinib when PI3 kinase association is blocked while inhibition of the lipid kinase activity of PI3 kinase cannot inhibit tumor growth, indicating that PI3 kinase is important for the drug resistance of secondary mutation of KIT independent of the lipid kinase activity of PI3 kinase. Conclusions: Our results suggested that PI3 kinase is necessary for the ligand-independent activation of secondary mutations of KIT, and loss of PI3 kinase association improves the sensitivity of secondary mutations to the targeted therapy independent of the lipid kinase activity of PI3 kinase.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view