SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jilderos Barbro 1947) "

Sökning: WFRF:(Jilderos Barbro 1947)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dozmorov, Mikhail, 1973, et al. (författare)
  • Contribution of AMPA and NMDA receptors to early and late phases of LTP in hippocampal slices.
  • 2006
  • Ingår i: Neuroscience research. - : Elsevier BV. - 0168-0102. ; 55:2, s. 182-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor mediated responses were investigated in rat hippocampal slices under 4h of long-term potentiation (LTP) expression. A modified medium containing the NMDA receptor antagonist AP5 and low concentration of Mg(2+) was used to monitor isolated AMPA responses. NMDA components were determined from composite excitatory postsynaptic potentials (EPSPs) under brief (15-20 min) wash-out of AP5. LTP was induced in a medium with low concentration of AP5, resulting in an about two-fold larger increase of the AMPA component than of the NMDA component at both 1h and 4h after induction. Similar results were obtained if LTP was induced in "normal Mg(2+)" and the NMDA components were assessed at the end of experiment, from either composite or isolated NMDA EPSPs, with or without blockade of GABAergic inhibition. It is generally believed that LTP undergoes biochemical and/or structural conversions during the first few hours. Our study, however, shows constant expression of LTP, at least in terms of AMPA versus NMDA components, during this time. The data support the notion that LTP initiates as a predominant amplification of AMPA receptors and remains so for at least 4h.
  •  
2.
  • Dozmorov, Mikhail, 1973, et al. (författare)
  • Slowly developing depression of N-methyl-D-aspartate receptor mediated responses in young rat hippocampi.
  • 2004
  • Ingår i: BMC neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Activation of N-methyl-D-aspartate (NMDA) type glutamate receptors is essential in triggering various forms of synaptic plasticity. A critical issue is to what extent such plasticity involves persistent changes of glutamate receptor subtypes and many prior studies have suggested a main role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in mediating the effect. Our previous work in hippocampal slices revealed that, under pharmacological unblocking of NMDA receptors, both AMPA and NMDA receptor mediated responses undergo a slowly developing depression. In the present study we have further addressed this phenomenon, focusing on the contribution via NMDA receptors. Pharmacologically isolated NMDA receptor mediated excitatory postsynaptic potentials (EPSPs) were recorded for two independent synaptic pathways in CA1 area using perfusion with low Mg2+ (0.1 mM) to unblock NMDA receptors. RESULTS: Following unblocking of NMDA receptors, there was a gradual decline of NMDA receptor mediated EPSPs for 2-3 hours towards a stable level of ca. 60-70 % of the maximal size. If such an experimental session was repeated twice in the same pathway with a period of NMDA receptor blockade in between, the depression attained in the first session was still evident in the second one and no further decay occurred. The persistency of the depression was also validated by comparison between pathways. It was found that the responses of a control pathway, unstimulated in the first session of receptor unblocking, behaved as novel responses when tested in association with the depressed pathway under the second session. In similar experiments, but with AP5 present during the first session, there was no subsequent difference between NMDA EPSPs. CONCLUSIONS: Our findings show that merely evoking NMDA receptor mediated responses results in a depression which is input specific, induced via NMDA receptor activation, and is maintained for several hours through periods of receptor blockade. The similarity to key features of long-term depression and long-term potentiation suggests a possible relation to these phenomena. Additionally, a short term potentiation and decay (<5 min) were observed during sudden start of NMDA receptor activation supporting the idea that NMDA receptor mediated responses are highly plastic.
  •  
3.
  • Li, Rui, 1975, et al. (författare)
  • Characterization of NMDA induced depression in rat hippocampus: involvement of AMPA and NMDA receptors.
  • 2004
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 0304-3940. ; 357:2, s. 87-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The involvement of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) vs. N-methyl-d-aspartate (NMDA) receptor mediated changes in NMDA-induced long-term depression (LTD) was assessed by monitoring isolated AMPA, isolated NMDA and composite field excitatory postsynaptic potentials (EPSP) in the CA1 area of acute rat hippocampal slices. Application of NMDA (20-50 microM) for 3-5 min led to LTD of both AMPA and NMDA receptor mediated EPSPs with near equal changes of the responses. However, AMPA EPSPs displayed a faster initial recovery than NMDA EPSPs. In addition, during the first 15-25 min after NMDA application, there was a superimposed potentiation of the later, but not early, part of AMPA EPSPs, implying a prolongation of waveform. In contrast, the NMDA EPSP waveform remained unaltered throughout the experiments. While it has been maintained that NMDA-induced depression is equivalent to stimulus-induced LTD, our results reveal additional complexity, suggesting a multitude of changes, most likely at the postsynaptic receptor level.
  •  
4.
  •  
5.
  • Tranberg, Mattias, 1977, et al. (författare)
  • NMDA-receptor mediated efflux of N-acetylaspartate: physiological and/or pathological importance?
  • 2004
  • Ingår i: Neurochemistry international. - : Elsevier BV. - 0197-0186. ; 45:8, s. 1195-204
  • Tidskriftsartikel (refereegranskat)abstract
    • N-Acetylaspartate (NAA) is a largely neuron specific dianionic amino acid present in high concentration in vertebrate brain. Many fundamental questions concerning N-acetylaspartate in brain remain unanswered. One such issue is the predominantly neuronal synthesis and largely glial catabolism which implies the existence of a regulated efflux from neurons. Here we show that transient (5 min) NMDA-receptor activation (60 microM) induces a long lasting Ca2+ -dependent efflux of N-acetylaspartate from organotypic slices of rat hippocampus. The NMDA-receptor stimulated efflux was unaffected by hyper-osmotic conditions (120 mM sucrose) and no efflux of N-acetylaspartate was evoked by high K+ -depolarization (50 mM) or kainate (300 microM). These results indicate that the efflux induced by NMDA is not related directly to either cell swelling or depolarization but is coupled to Ca2+ -influx via the NMDA-receptor. The efflux of N-acetylaspartate persisted at least 20 min after the omission of NMDA, similar to the efflux of the organic anions glutathione and phosphoethanolamine. The efflux of taurine and hypotaurine was also stimulated by NMDA but returned more quickly to basal levels. The NMDA-receptor stimulated efflux of N-acetylaspartate, glutathione, phosphoethanolamine, taurine and hypotaurine correlated with delayed nerve cell death measured 24 h after the transient NMDA-receptor stimulation. However, exogenous administration of high concentrations of N-acetylaspartate to the culture medium was non-toxic. The results suggest that Ca2+ -influx via the NMDA-receptor regulates the efflux of N-acetylaspartate from neurons which may have both physiological and pathological importance.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy