SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jochem E) "

Sökning: WFRF:(Jochem E)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
2.
  •  
3.
  • Arthur Hvidtfeldt, Ulla, et al. (författare)
  • Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort
  • 2021
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the Effects of Low-level Air Pollution: A Study in Europe (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence.Methods: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status).Results: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m(3) PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m(3) PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m(3) PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative.Conclusions: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
  •  
4.
  •  
5.
  • Baumeister, Sebastian E., et al. (författare)
  • Association between physical activity and risk of hepatobiliary cancers : A multinational cohort study
  • 2019
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278 .- 1600-0641. ; 70:5, s. 885-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: To date, evidence on the association between physical activity and risk of hepatobiliary cancers has been inconclusive. We examined this association in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC).Methods: We identified 275 hepatocellular carcinoma (HCC) cases, 93 intrahepatic bile duct cancers (IHBCs), and 164 non-gallbladder extrahepatic bile duct cancers (NGBCs) among 467,336 EPIC participants (median follow-up 14.9 years). We estimated cause-specific hazard ratios (HRs) for total physical activity and vigorous physical activity and performed mediation analysis and secondary analyses to assess robustness to confounding (e.g. due to hepatitis virus infection).Results: In the EPIC cohort, the multivariable-adjusted HR of HCC was 0.55 (95% CI 0.38–0.80) comparing active and inactive individuals. Regarding vigorous physical activity, for those reporting >2 hours/week compared to those with no vigorous activity, the HR for HCC was 0.50 (95% CI 0.33–0.76). Estimates were similar in sensitivity analyses for confounding. Total and vigorous physical activity were unrelated to IHBC and NGBC. In mediation analysis, waist circumference explained about 40% and body mass index 30% of the overall association of total physical activity and HCC.Conclusions: These findings suggest an inverse association between physical activity and risk of HCC, which is potentially mediated by obesity.Lay summary: In a pan-European study of 467,336 men and women, we found that physical activity is associated with a reduced risk of developing liver cancers over the next decade. This risk was independent of other liver cancer risk factors, and did not vary by age, gender, smoking status, body weight, and alcohol consumption.
  •  
6.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/aim: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence.Methods: The Effects of Low-level Air Pollution: a Study in Europe (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O-3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socioeconomic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines.Results: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O-3 (warm season) were 24.2 mu g/m(3) (19.5, 29.7), 15.4 mu g/m(3) (12.8, 17.3), 1.6 10(-5)m(-1) (1.3, 1.8), and 86.6 mu g/m(3) (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 mu g/m(3)). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 mu g/m(3). We did not observe associations between NO2, BC or O-3 and lung cancer incidence.Conclusions: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
  •  
7.
  • Klug, Stefanie J, et al. (författare)
  • TP53 codon 72 polymorphism and cervical cancer : a pooled analysis of individual data from 49 studies
  • 2009
  • Ingår i: The Lancet Oncology. - 1470-2045 .- 1474-5488. ; 10:8, s. 772-784
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cervical cancer is caused primarily by human papillomaviruses (HPV). The polymorphism rs1042522 at codon 72 of the TP53 tumour-suppressor gene has been investigated as a genetic cofactor. More than 80 studies were done between 1998 and 2006, after it was initially reported that women who are homozygous for the arginine allele had a risk for cervical cancer seven times higher than women who were heterozygous for the allele. However, results have been inconsistent. Here we analyse pooled data from 49 studies to determine whether there is an association between TP53 codon 72 polymorphism and cervical cancer. METHODS: Individual data on 7946 cases and 7888 controls from 49 different studies worldwide were reanalysed. Odds ratios (OR) were estimated using logistic regression, stratifying by study and ethnic origin. Subgroup analyses were done for infection with HPV, ethnic origin, Hardy-Weinberg equilibrium, study quality, and the material used to determine TP53 genotype. FINDINGS: The pooled estimates (OR) for invasive cervical cancer were 1.22 (95% CI 1.08-1.39) for arginine homozygotes compared with heterozygotes, and 1.13 (0.94-1.35) for arginine homozygotes versus proline homozygotes. Subgroup analyses showed significant excess risks only in studies where controls were not in Hardy-Weinberg equilibrium (1.71 [1.21-2.42] for arginine homozygotes compared with heterozygotes), in non-epidemiological studies (1.35 [1.15-1.58] for arginine homozygotes compared with heterozygotes), and in studies where TP53 genotype was determined from tumour tissue (1.39 [1.13-1.73] for arginine homozygotes compared with heterozygotes). Null results were noted in studies with sound epidemiological design and conduct (1.06 [0.87-1.29] for arginine homozygotes compared with heterozygotes), and studies in which TP53 genotype was determined from white blood cells (1.06 [0.87-1.29] for arginine homozygotes compared with heterozygotes). INTERPRETATION: Subgroup analyses indicated that excess risks were most likely not due to clinical or biological factors, but to errors in study methods. No association was found between cervical cancer and TP53 codon 72 polymorphism when the analysis was restricted to methodologically sound studies.
  •  
8.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of asthma : the ELAPSE project
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 mu m (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults.Methods: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders.Results: Of 98326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 mu g.m(-3) for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 mu g.m(-3) for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5 x 10(-5) m(-1) for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO 2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold.Conclusions: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.
  •  
9.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease : The ELAPSE project
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent.Objectives: We examined the association between long-term exposure to low-level air pollution and COPD incidence.Methods: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models.Results: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 mu g/m(3) for PM2.5, 1.11 (1.06, 1.16) per 10 mu g/m(3) for NO2, and 1.11 (1.06, 1.15) per 0.5 10(-5) m(-1) for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC.Conclusions: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.
  •  
10.
  • Mauritsen, Thorsten, et al. (författare)
  • Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:4, s. 998-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
rapport (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
de Hoogh, Kees (6)
Hoek, Gerard (6)
Sigsgaard, Torben (6)
Nagel, Gabriele (6)
Chen, Jie (6)
Rizzuto, Debora (6)
visa fler...
Peters, Annette (6)
Bellander, Tom (6)
Leander, Karin (6)
Katsouyanni, Klea (6)
Weinmayr, Gudrun (6)
Stafoggia, Massimo (6)
Cesaroni, Giulia (6)
Fecht, Daniela (6)
Forastiere, Francesc ... (6)
Gulliver, John (6)
Hertel, Ole (6)
Hoffmann, Barbara (6)
Ketzel, Matthias (6)
Klompmaker, Jochem O ... (6)
Liu, Shuo (6)
Samoli, Evangelia (6)
Vienneau, Danielle (6)
Wolf, Kathrin (6)
Boutron-Ruault, Mari ... (5)
Brunekreef, Bert (5)
Magnusson, Patrik K ... (5)
Oftedal, Bente (5)
Raaschou-Nielsen, Ol ... (5)
Bauwelinck, Mariska (5)
Pershagen, Göran (4)
Severi, Gianluca (4)
Brandt, Jørgen (4)
Renzi, Matteo (4)
Rodopoulou, Sophia (4)
Strak, Maciej (4)
Hvidtfeldt, Ulla A. (4)
van Gils, Carla H. (3)
Tjonneland, Anne (3)
Atkinson, Richard (3)
Andersen, Zorana J. (3)
Lang, Alois (3)
Jovanovic Andersen, ... (3)
Concin, Hans (3)
Janssen, Nicole (3)
Jöckel, Karl-Heinz (3)
Ljungman, Petter L. ... (3)
Janssen, Nicole A H (3)
Mehta, Amar (3)
Atkinson, Richard W. (3)
visa färre...
Lärosäte
Stockholms universitet (8)
Karolinska Institutet (7)
Lunds universitet (3)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy