SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jogenfors Jonathan) "

Sökning: WFRF:(Jogenfors Jonathan)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jogenfors, Jonathan, 1988- (författare)
  • A Classical-Light Attack on Energy-Time Entangled Quantum Key Distribution, and Countermeasures
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Quantum key distribution (QKD) is an application of quantum mechanics that allowstwo parties to communicate with perfect secrecy. Traditional QKD uses polarization of individual photons, but the development of energy-time entanglement could lead to QKD protocols robust against environmental effects. The security proofs of energy-time entangled QKD rely on a violation of the Bell inequality to certify the system as secure. This thesis shows that the Bell violation can be faked in energy-time entangled QKD protocols that involve a postselection step, such as Franson-based setups. Using pulsed and phase-modulated classical light, it is possible to circumvent the Bell test which allows for a local hidden-variable model to give the same predictions as the quantum-mechanical description. We show that this attack works experimentally and also how energy-time-entangled systems can be strengthened to avoid our attack.
  •  
3.
  • Jogenfors, Jonathan, 1988- (författare)
  • Breaking the Unbreakable : Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established.Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity.
  •  
4.
  • Jogenfors, Jonathan, 1988-, et al. (författare)
  • Comment on "Franson Interference Generated by a Two-Level System"
  • 2017
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In a recent Letter [Phys. Rev. Lett. 118, 030501 (2017)], Peiris, Konthasinghe, and Muller report a Franson interferometry experiment using pairs of photons generated from a two-level semiconductor quantum dot. The authors report a visibility of 66% and claim that this visibility “goes beyond the classical limit of 50% and approaches the limit of violation of Bell’s inequalities (70.7%).” We explain why we do not agree with this last statement and how to fix the problem.
  •  
5.
  • Jogenfors, Jonathan, et al. (författare)
  • Energy-time entanglement, elements of reality, and local realism
  • 2014
  • Ingår i: Journal of Physics A. - : IOP Publishing: Hybrid Open Access. - 1751-8113 .- 1751-8121. ; 47:42, s. 424032-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Franson interferometer, proposed in 1989 (Franson 1989 Phys. Rev. Lett. 62 2205-08), beautifully shows the counter-intuitive nature of light. The quantum description predicts sinusoidal interference for specific outcomes of the experiment, and these predictions can be verified in experiment. In the spirit of Einstein, Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this setup) can be considered complete. This question will be answered in detail in this paper, by delineating the quite complicated relation between energy-time entanglement experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned sinusoidal interference pattern is the same as that giving a violation in the usual Bell experiment. Even so, depending on the precise requirements made on the local realist model, this can imply (a) no violation, (b) smaller violation than usual, or (c) full violation of the appropriate statistical bound. Alternatives include (a) using only the measurement outcomes as EPR elements of reality, (b) using the emission time as EPR element of reality, (c) using path realism, or (d) using a modified setup. This paper discusses the nature of these alternatives and how to choose between them. The subtleties of this discussion needs to be taken into account when designing and setting up experiments intended to test local realism. Furthermore, these considerations are also important for quantum communication, for example in Bell-inequality-based quantum cryptography, especially when aiming for device independence.
  •  
6.
  • Jogenfors, Jonathan, 1988-, et al. (författare)
  • Hacking the Bell test using classical light in energy-time entanglement-based quantum key distribution
  • 2015
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 1:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.
  •  
7.
  • Jogenfors, Jonathan, 1988- (författare)
  • Quantum Bitcoin : An Anonymous, Distributed, and Secure Currency Secured by the No-Cloning Theorem of Quantum Mechanics
  • 2019
  • Ingår i: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). - : IEEE. - 9781728113289 - 9781728113296
  • Konferensbidrag (refereegranskat)abstract
    • The digital currency Bitcoin has had remarkable growth since it was first proposed in 2008. Its distributed nature allows currency transactions without a central authority by using cryptographic methods and a data structure called the blockchain. Imagine that you could run the Bitcoin protocol on a quantum computer. What advantages can be had over classical Bitcoin? This is the question we answer here by introducing Quantum Bitcoin which, among other features, has immediate local verification of transactions. This is a major improvement over classical Bitcoin since we no longer need the computationally-intensive and time-consuming method of recording all transactions in the blockchain. Quantum Bitcoin is the first distributed quantum currency, and this paper introduces the necessary tools including a novel two-stage quantum mining process. In addition, we have counterfeiting resistance, fully anonymous and free transactions, and a smaller footprint than classical Bitcoin.
  •  
8.
  • Jogenfors, Jonathan, et al. (författare)
  • Tight bounds for the Pearle-Braunstein-Caves chained inequality without the fair-coincidence assumption
  • 2017
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - : AMER PHYSICAL SOC. - 2469-9926 .- 2469-9934. ; 96:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In any Bell test, loopholes can cause issues in the interpretation of the results, since an apparent violation of the inequality may not correspond to a violation of local realism. An important example is the coincidence-time loophole that arises when detector settings might influence the time when detection will occur. This effect can be observed in many experiments where measurement outcomes are to be compared between remote stations because the interpretation of an ostensible Bell violation strongly depends on the method used to decide coincidence. The coincidence-time loophole has previously been studied for the Clauser-Horne-Shimony-Holt and Clauser-Horne inequalities, but recent experiments have shown the need for a generalization. Here, we study the generalized chained inequality by Pearle, Braunstein, and Caves (PBC) with N amp;gt;= 2 settings per observer. This inequality has applications in, for instance, quantum key distribution where it has been used to reestablish security. In this paper we give the minimum coincidence probability for the PBC inequality for all N amp;gt;= 2 and show that this bound is tight for a violation free of the fair-coincidence assumption. Thus, if an experiment has a coincidence probability exceeding the critical value derived here, the coincidence-time loophole is eliminated.
  •  
9.
  • Lavesson, Nils, et al. (författare)
  • Modeling of streamers in transformer oil using OpenFOAM
  • 2014
  • Ingår i: Compel. - : Emerald Group Publishing Limited. - 0332-1649. ; 33:4, s. 1272-1281
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose – A model for streamers based on charge transport has been developed by MIT and ABB. The purpose of this paper is to investigate the consequences of changing numerical method from the finite element method (FEM) to the finite volume method (FVM) for simulations using the streamer model. The new solver is also used to extend the simulations to 3D. Design/methodology/approach – The equations from the MIT-ABB streamer model are implemented in OpenFOAM which uses the FVM. Checks of the results are performed including verification of convergence. The solver is then applied to some of the key simulations from the FEM model and results presented. Findings – The results for second mode streamers are confirmed, whereas the results for third mode streamers differ significantly leading to questioning of one hypothesis proposed based on the FEM results. The 3D simulations give consistent results and show a way forward for future simulations. Originality/value – The FVM has not been applied to the model before and led to more confidence in second mode result and revising of third mode results. In addition the new simulation method makes it possible to extend the results to 3D.
  •  
10.
  • Tomasin, Marco, et al. (författare)
  • High-visibility time-bin entanglement for testing chained Bell inequalities
  • 2017
  • Ingår i: Physical Review A. - : AMER PHYSICAL SOC. - 2469-9926. ; 95:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The violation of Bells inequality requires a well-designed experiment to validate the result. In experiments using energy-time and time-bin entanglement, initially proposed by Franson in 1989, there is an intrinsic loophole due to the high postselection. To obtain a violation in this type of experiment, a chained Bell inequality must be used. However, the local realism bound requires a high visibility in excess of 94.63% in the time-bin entangled state. In this work, we show how such a high visibility can be reached in order to violate a chained Bell inequality with six, eight, and ten terms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy