SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonigk Danny) "

Sökning: WFRF:(Jonigk Danny)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffmann, Markus, et al. (författare)
  • Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. Methods: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. Findings: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. Interpretation: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. Funding: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.
  •  
2.
  • Ricke-Hoch, Melanie, et al. (författare)
  • Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglan-din-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.
  •  
3.
  • Thiesen, Susanne, et al. (författare)
  • The protease inhibitor cystatin C downregulates the release of IL-β and TNF-α in lipopolysaccharide activated monocytes
  • 2016
  • Ingår i: Journal of Leukocyte Biology. - 0741-5400. ; 100:4, s. 811-822
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cystatin C, a member of the cysteine proteinaseinhibitory family, is produced by all nucleated cells and has important roles in regulating natural immunity. Nematode homologs to human cystatin C have been shown to have anti-inflammatory effects on monocytes and to reduce colitis in mice. In Crohn’s disease, pathogenic activated monocytes help drive inflammatory processes via the release of proinflammatory cytokines and chemokines. In particular, tumor necrosis factora-producing inflammatory monocytes have a central role in the intestinal inflammation in patients with Crohn’s disease. We investigated the potential of human cystatin C to regulate pathogenic activated monocytes and its potential as an Immunomodulator in Crohn’s disease.We found that cystatin C significantly decreased the lipopolysaccharide-stimulated release and expression of interleukin-1b and tumor necrosis factor-α in monocyte and peripheral blood mononuclear cell cultures from healthy donors, whereas interleukin-6 and interleukin-8 levels were unchanged. A similar reduction of interleukin-1b and tumor necrosis factor-α was also seen in peripheral bloodmononuclear cell cultures from patientswith Crohn’s disease, and in particular, tumor necrosis factor-α was reduced in supernatants from lamina propria cell cultures from patients with Crohn’s disease. Further investigation revealed that cystatin C was internalized by monocytes via an active endocytic process, decreased phosphorylation of the mitogen-αctivated protein kinase pathway extracellular signal-regulated kinase-1/2, and altered surface marker expression. The ability of cystatin C to modulate the cytokine expression of monocytes, together with its protease-inhibitory function, indicates that modulation of the local cystatin C expression could be an option in future Crohn’s disease therapy.
  •  
4.
  • Tumpara, Srinu, et al. (författare)
  • A novel mouse monoclonal antibody c42 against c-terminal peptide of alpha-1-antitrypsin
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse mono-clonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot-and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy