SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonnalagadda D) "

Sökning: WFRF:(Jonnalagadda D)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Drake, TM, et al. (författare)
  • Surgical site infection after gastrointestinal surgery in children: an international, multicentre, prospective cohort study
  • 2020
  • Ingår i: BMJ global health. - : BMJ. - 2059-7908. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings.MethodsA multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI).ResultsOf 1159 children across 181 hospitals in 51 countries, 523 (45·1%) children were from high HDI, 397 (34·2%) from middle HDI and 239 (20·6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12·8% (51/397) in middle HDI and 24·7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI.ConclusionThe odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.
  •  
3.
  •  
4.
  • Alexander, Stephen P. H., et al. (författare)
  • The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
  • 2023
  • Ingår i: BRITISH JOURNAL OF PHARMACOLOGY. - : British pharmacological society. - 0007-1188 .- 1476-5381. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at . G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
5.
  • Christopoulos, Arthur, et al. (författare)
  • THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.
  • 2021
  • Ingår i: British journal of pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 178 Suppl 1
  • Forskningsöversikt (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
6.
  • Jonnalagadda, Krishna Praveen, 1988- (författare)
  • Thermal Barrier Coatings : Failure Mechanisms and Life Prediction
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermal barrier coatings (TBCs) use in the hot sections of gas turbine engine enables them to run at higher temperatures, and as a consequence, achieve higher thermal efficiency. For full operational exploitation of TBCs, understanding their failure and knowing the service life is essential. The broad objective of the current research is to study the failure mechanisms of new TBC materials and deposition techniques during corrosion and thermal cycling and to develop life models capable of predicting the final failure during thermal cycling.Yttria-stabilized zirconia (YSZ) has constraints such as limited operation temperature, despite being the current industry standard. Pyrochlores of A2B2O7 type have been suggested as a potential replacement for YSZ and were studied in this work. Additionally, improvements to the conventional YSZ in the form of nanostructured YSZ were also explored. The requirement for the new deposition process comes from the fact that the existing low-cost deposition processes, like atmospheric plasma spray (APS), generally exhibit lower strain tolerance. A relatively new technique, suspension plasma spray (SPS), known to be promising with better strain tolerance, has been studied in this work.At the gas turbine operating conditions, TBCs degrade and eventually fail. Common failure observed in gas turbines can be due to corrosion, thermal mismatch between the ceramic and the metallic layers, and bond coat oxidation during thermal cycling. SPS and APS TBCs were subjected to different test conditions to understand their corrosion behavior. A study on the multi-layered SPS TBCs in the presence of V2O5+Na2SO4 showed that YSZ based SPS coatings were less susceptible to corrosion damage compared to Gd2Zr2O7 SPS TBCs. A study on the influence of a sealing layer in multi-layered SPS TBCs in the presence of Na2SO4+NaCl showed that the sealing layer is ineffective if the material used for sealing is inert to the molten salts. A new study on the influence of corrosion, caused by a mixed-gas atmosphere, on the thermal cycling fatigue life of SPS TBCs was conducted. Results showed that corrosive products grew inside the top coat close to the bond coat/top coat interface along with accelerated growth of alumina. These, together, reduced the TCF life of corrosion exposed samples significantly. Finally, a study on the influence of salt concentration and temperature on a thin (dense) and a thick (porous) coating showed that thick and porous coatings have lower corrosion resistance than the thin and dense coatings. Additionally, a combination of low temperature and high salt concentration was observed to cause more damage.Thermal cycling studies were done with the objective of understanding the failure mechanisms and developing a life model. A life model based on fracture mechanics approach has been developed by taking into account different crack growth paths during thermal cycling, sintering of the top coat, oxidation of the bond coat and the thermal mismatch stresses. Validation of such a life model by comparing to the experimental results showed that the model could predict the TCF life reasonably well at temperatures of 1100 °C or below. At higher temperatures, the accuracy of the model became worse. As a further development, a simplified crack growth model was established. This simplified model was shown to be capable of predicting the TCF life as well as the effect of hold times with good accuracy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy