SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsson Magnus Professor 1981 ) "

Sökning: WFRF:(Jonsson Magnus Professor 1981 )

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Che, Canyan, 1988- (författare)
  • Electrochemical Reactions of Quinones at Conducting Polymer Electrodes
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proton-coupled multielectron transfer reactions are of great abundance in Nature. In particular, two-proton-two-electron transfers in quinone/hydroquinone redox couples are behind oxidative phosphorylation (ADP-to-ATP) and photosystem II. The redox processes of neurotransmitters, as a platform for brain activity read-out, are two-proton two-electron transfers of quinones. Moreover, humic acids, which constitute a major organic fraction of soil, turf, coal, and lignin, which forms as a large-scale surplus product from forest and paper industry, contain a large quantity of polyphenols, which can undergo the exchange of two electrons per aromatic ring accompanied with transfers of two protons. This makes polyphenol-based biopolymers, such as lignin, promising green-chemistry renewable materials for electrical energy storage or generation. The application of intact or depolymerized polyphenols in electrical energy devices such as fuel cells and redox flow batteries requires appropriate electrode materials to ensure efficient proton-coupled electron transfer reactions occurring at the solid-liquid interface. Moreover, investigation of the biological quinones reaction calls for porous, soft, biocompatible materials as implantable devices to reduce the rejection reaction and pain.At common electrode materials such as platinum and carbons, quinone/hydroquinone redox processes are rather irreversible; in addition, platinum is very costly. Conducting polymers (CPs), poly(3,4-ethylenedioxythiophene) (PEDOT) in particular, offer an attractive option as metal-free electrode material for these reactions due to their molecular porosity, high electrical and ionic conductivity, solution processability, resistance to acid media, as well as high atomic abundance of their constituents.This thesis explores the possibility of utilizing CPs as electrode materials for driving various quinone redox reactions. Firstly, we studied the electrocatalytic activity and mechanism of PEDOTs for the generic hydroquinone reaction and their application in a fuel cell. Secondly, the mechanism of integrating lignosulfonate (LS) into CP matrices and optimization strategies were explored in order to boost energy storage capacity. Thirdly, we attained mechanistic understanding of the influence of ionic transport and proton management on the thermodynamics and kinetics of the electrocatalysis on CPs, thereby providing steps towards the design of quinone-based electrical energy storage devices, such as organic redox flow batteries (ORFB).
  •  
3.
  • Che, Canyan, 1988-, et al. (författare)
  • Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer–polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g−1. 
  •  
4.
  • Chen, Shangzhi (författare)
  • Optics of Conducting Polymer Thin Films and Nanostructures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications.Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.
  •  
5.
  • Kim, Nara, 1985-, et al. (författare)
  • Electric transport properties in PEDOT thin films
  • 2019. - 4
  • Ingår i: Conjugated polymers. - Boca Raton : CRC Press. - 9780429190520 ; , s. 45-128
  • Bokkapitel (refereegranskat)abstract
    • In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.
  •  
6.
  • Mitraka, Evangelia, 1986- (författare)
  • Conducting Polymer Electrodes for Oxygen Reduction Reaction
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Both the pollution level of the environment and the increasing energy demands have stimulated intense research on the development of low-cost environmentally-friendly energy conversion and storage systems with high efficiency, such as metal-air batteries and fuel cells.One of the most essential parts of both fuel cells and metal–air batteries is the air-electrode which is responsible for the reduction of O2. The air-electrode can use O2 from air facilitating the layout of the device; however, the process taking place on it is significantly complex. Currently, platinum (Pt) is the benchmark for air-electrodes in such technologies, although it is expensive and exhibits other important disadvantages which diminish the fuel cell performance. Therefore, extensive research has been devoted to reduce the amount of Pt used in air-electrodes and to develop a noble metal-free version of these electrodes.The area of printed electronics could facilitate the development of low-cost electrodes produced in high volume for such applications. Conducting polymers are attractive materials for this technology because they may combine several desired properties, like electronic conduction, ionic conduction and catalysis of electrochemical reactions.Among other conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) emerged as an alternative cathode catalyst material to Pt, due to its ability to effectively catalyze the oxygen reduction reaction (ORR), while it also exhibits high electrical and ionic conductivity.The focus of this thesis is to study the electrocatalytic activity and mechanism of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) when employed as an airelectrode in energy storage devices, such as fuel cells and metal-air batteries. Although PEDOT is extensively studied during the last decade as an air-electrode for fuel cell and metal-air batteries, vital pieces of the catalytic mechanism that PEDOT follows remain unknown, namely: (i) the sites of PEDOT on which O2 interacts and (ii) the intermediate species which are formed during the ORR. The content of this thesis tackles these topics, both from experimental and theoretical point of view. Moreover, it investigates the use of PEDOT as an active electrocatalyst in a polymer exchange membrane (PEM) fuel cell, by embedding the polymer in a cellulose matrix, aiming to fabricate a gas diffusion electrode for the ORR side of the device. Finally, the goal of the thesis surpasses the limit of the p-doped PEDOT and undertakes the evaluation of a n-type conjugated polymer of high electron affinity as a cathode in reduction processes.  
  •  
7.
  • Rossi, Stefano, 1993- (författare)
  • Reflective structural colors and their actuation using electroactive conducting polymers
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The integration of inorganic photonic nanostructures with organic materials opens new possibilities to dynamically modify the optical response of photonic devices. This thesis focuses on how to generate efficient reflective structural colors and tune them in combination with a conducting polymer (CP). The main technological interest lies in color reflective displays, devices with ultralow power consumption that work with reflected environmental light. The main challenge is to obtain dynamic color tunability while maintaining good chromaticity and brightness. We first studied how to make efficient reflective structural colors and focused on highly reflective optical nanocavities based on metal-insulator-metal (MIM), combining the Fabry-Pérot effect and a broadband absorber. We demonstrated a full color palette by changing the spacer thickness and proposed different configurations to improve the chromaticity and reproduce black. We also explored subtractive coloration with a cyan-yellow-magenta (CYM) system to increase the relative luminance for reflective displays. We covered the CYM spectrum by combining plasmonic nanodisks with optical nanocavities, using a scalable nanofabrication method based on colloidal lithography. Subsequently, we modified our optical nanocavities by replacing the dielectric spacer with a low bandgap electroactive CP, polythieno[3,4 b]thiophene(pT34bT), to obtain active color tunability. By integrating the optical nanocavities in an electrochemical cell, we proved tunability of the reflected color across all the visible spectrum with low operating voltages and similar reflectance values for all the oxidation states. Those cavities can be considered a proof of principle for the development of tunable monopixels.  In addition, we explored vapour phase polymerization (VPP) as an alternative deposition method with direct patterning possibilities by UV-exposure of the precursor oxidant film. We developed optical reflective nanocavities with a spacer based on poly[3,4-ethylenedioxythiophene]:Tosylate (PEDOT:Tos) on metal mirrors, generating color images by different UV exposures. We showed the feasibility of generating images by using a UV photomask with different contrasts. Those cavities could also be switched in color by electrochemical tuning in an electrolyte, reaching different electrochromic states. This method has the potential to be extended to other types of polymers and to be used for display technologies.
  •  
8.
  • Shiran Chaharsoughi, Mina, 1986- (författare)
  • Hybrid Plasmonics for Energy Harvesting and Sensing of Radiation and Heat
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The special optical properties of subwavelength metallic structures have opened up for numerous applications in different fields. The interaction of light with metal nanostructures leads to the excitation of collective oscillations of conduction-band electrons, known as plasmons. These plasmon excitations are responsible for the high absorption and high scattering of light in metallic nanostructures. High absorption of light and the subsequent temperature increase in the nanostructures make them suitable as point-like heat sources that can be controlled remotely by light.The research presented in this thesis focuses on the development and studies of hybrid devices that combine light-induced heating in plasmonic nanostructures with other materials and systems. Particular focus is put on hybrid organic-inorganic systems for applications in energy harvesting as well as in heat and radiation sensing. Harvesting energy from light fluctuations was achieved in a hybrid device consisting of plasmonic gold nanodisk arrays and a pyroelectric copolymer. In this concept, fast and efficient light-induced heating in the gold nanodisks modulated the temperature of the pyroelectric layer, which could be used to extract electrical energy from fluctuations in simulated sunlight.Integrating plasmonic nanostructures with complementary materials can also provide novel hybrid sensors, for monitoring of temperature, heat flux and radiation. In this thesis work, a hybrid sensor was designed based on the combination of a plasmonic gold nanohole layer with a pyroelectric copolymer and an ionic thermoelectric gel. The gold nanohole arrays acted both as broadband light absorbers in the visible to near-infrared spectral range of the solar spectrum and also as one of the electrodes of the sensor. In contrast to the constituent components when used separately, the hybrid sensor could provide both fast and stable signals upon heat or radiation stimuli, as well as enhanced equilibrium signals.Furthermore, a concept for heat and radiation mapping was developed that was highly sensitive and stable despite its simple structure. The concept consisted of a gel-like electrolyte connecting two separated metal nanohole electrodes on a substrate. Resembling traditional thermocouples, this concept could autonomously detect temperature changes but with several orders of magnitudes higher sensitivity. Owing to its promising sensing properties as well as its compatibility with inexpensive mass production methods on flexible substrates, such concept may be particularly interesting for electronic skin applications for health monitoring and for humanoid robotics. Finally, we improved the possibilities for the temperature mapping of the concept by modifying the structure from lateral to vertical form. Similar to the lateral device, the vertical temperature sensor showed high temperature sensitivity and stability in producing signals upon temperature changes.
  •  
9.
  • Chen, Shangzhi, et al. (författare)
  • Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8, s. 18726-18734
  • Tidskriftsartikel (refereegranskat)abstract
    • The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms a promising alternative to conventional inorganic conductors, where deposition of thin films via vapour phase polymerization (VPP) has gained particular interest owing to high electrical conductivity within the plane of the film. The conductivity perpendicular to the film is typically much lower, which may be related not only to preferential alignment of PEDOT crystallites but also to vertical stratification across the film. In this study, we reveal non-linear vertical microstructural variations across VPP PEDOT:Tos thin films, as well as significant differences in doping level between the top and bottom surfaces. The results are consistent with a VPP mechanism based on diffusion-limited transport of polymerization precursors. Conducting polymer films with vertical inhomogeneity may find applications in gradient-index optics, functionally graded thermoelectrics, and optoelectronic devices requiring gradient doping.
  •  
10.
  • Gryszel, Maciej, 1991- (författare)
  • Organic electronic materials for hydrogen peroxide production
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hydrogen peroxide (H2O2) is an important oxidant, used in various fields of industry, such as paper manufacturing, production of polymers, detergents, and cosmetics. Considering that the molecule degrades only to H2O and O2, it is regarded as a green chemical. Unfortunately, the incumbent method of H2O2 synthesis, based on anthraquinone oxidation, although efficient, is not environmentally friendly, as it requires fossil fuels and significant energy input. Therefore, there are efforts underway to reduce the ecological impact of hydrogen peroxide production. Some of the most promising approaches involve catalytic reduction of O2 to H2O2 in an aqueous environment. This can be coupled with water oxidation. As the required energy could be delivered in different ways, hydrogen peroxide synthesis can be achieved by electrocatalysis, photoelectrocatalysis, or photocatalysis.This thesis explores the possibility of using organic electronic materials as catalysts for H2O2 evolution in oxygenated water solutions. Organic electronics is a field of materials science focused on conducting and semiconducting organic molecules. These materials offer many possible advantages, related to low cost, flexibility, and good optoelectronic properties. Huge progress in the field over the last years led to their commercial applications in e.g. organic light emitting diodes and photovoltaics. Only very recently have organic electronics begun to be considered from the point of view of catalysis.In the first two papers, we investigate electrocatalytic activity of an organic pigment (PTCDI) and a conducting polymer (PEDOT) towards oxygen reduction to hydrogen peroxide. Both types of catalysts are chemically stable and able to operate in a wide pH range. In paper 3, we demonstrate that H2O2-evolving photocathodes can be based on an organic PN heterojunction, giving devices of a record-breaking performance. In the first part of paper 4, the same concept was tested for a naturally-occurring semiconductor, eumelanin, leading to a first report of photoelectrocatalytic properties of this material. In the second part of paper 4, as well as in papers 5 and 6, we explore, respectively, photochemical hydrogen peroxide synthesis with eumelanin, organic semiconductors, and organic dyes. We show that the photostability of catalysts is higher for materials with low-lying HOMO level and it can be increased by an addition of a reducing agent to the reaction system. Our findings prove that already existing organic electronic materials can be successfully applied in H2O2 evolution for environmentally friendly chemical synthesis, suggesting their use in harvesting of solar energy and in situ generation of hydrogen peroxide for biomedical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
doktorsavhandling (6)
tidskriftsartikel (3)
konferensbidrag (1)
bokkapitel (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (6)
refereegranskat (5)
Författare/redaktör
Crispin, Xavier, Pro ... (6)
Jonsson, Magnus, 198 ... (4)
Berggren, Magnus, 19 ... (3)
Chen, Shangzhi (3)
Jonsson, Magnus, Sen ... (3)
Vagin, Mikhail, 1976 ... (2)
visa fler...
Gueskine, Viktor (2)
Petsagkourakis, Ioan ... (2)
Che, Canyan, 1988- (2)
Jonsson, Bengt, 1957 ... (1)
Sagonas, Konstantino ... (1)
Abdulla, Parosh, Pro ... (1)
Atig, Mohamed Faouzi ... (1)
Lång, Magnus, 1991- (1)
Meyer Bonneland, Fre ... (1)
Das, Sarbojit (1)
Martinelli, Anna, 19 ... (1)
Gabrielsson, Roger (1)
Bernin, Diana, 1979 (1)
Liu, Xianjie, Ph.D. ... (1)
Ail, Ujwala, 1980- (1)
Fahlman, Mats, 1967- (1)
Fischer, Thomas (1)
Fabiano, Simone, 198 ... (1)
Brooke, Robert, 1989 ... (1)
Kuang, Chaoyang (1)
Mak, Wing Cheung, 19 ... (1)
Rossi, Stefano, 1993 ... (1)
Shahi, Maryam (1)
Brooke, Robert (1)
Pavlopoulou, Eleni (1)
Zhao, Dan, 1986- (1)
Crispin, Xavier, 197 ... (1)
Vagin, Mikhail, PhD, ... (1)
Jonsson, Magnus, PhD ... (1)
Lapkowski, Mieczysla ... (1)
Phopase, Jaywant, 19 ... (1)
Jonsson, Magnus P., ... (1)
Kang, Evan S. H. (1)
Darakchieva, Vanya, ... (1)
Barnes, William, Pro ... (1)
Spampinato, Nicolett ... (1)
Zozoulenko, Igor, 19 ... (1)
Ullah Khan, Zia, 197 ... (1)
Gryszel, Maciej, 199 ... (1)
Glowacki, Eric, Seni ... (1)
Ratcliff, Erin, Prof ... (1)
Kim, Nara, 1985- (1)
Brill, Joseph (1)
Mitraka, Evangelia, ... (1)
visa färre...
Lärosäte
Linköpings universitet (10)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
RISE (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy