SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Josefson Alf B.) "

Sökning: WFRF:(Josefson Alf B.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, Jesper H., et al. (författare)
  • Long-term temporal and spatial trends in eutrophication status of the Baltic Sea
  • 2017
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 92:1, s. 135-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of the Baltic Sea is currently classified as 'affected by eutrophication'. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50-100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long-term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112-year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid-1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long-term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large-scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem-based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.
  •  
2.
  • Villnäs, Anna, et al. (författare)
  • Changes in macrofaunal biological traits across estuarine gradients : implications for the coastal nutrient filter
  • 2019
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 622, s. 31-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Benthic macrofaunal communities have a profound impact on organic matter turnover and nutrient cycling in marine sediments. Their activities are of particular importance in the coastal filter, where nutrients and organic matter from land are transformed and/or retained before reaching the open sea. The benthic fauna modify the coastal filter directly (through consumption, respiration, excretion and biomass production) and indirectly (through bioturbation). It is hard to experimentally quantify faunal contribution to the coastal filter over large spatial and temporal scales that encompass significant environmental and biological heterogeneity. However, estimates can be obtained with biological trait analyses. By using benthic biological traits, we explored how the potential contribution of macrofaunal communities to the coastal filter differ between inner and outer sites in an extensive archipelago area and examine the generality of the observed pattern across contrasting coastal areas of the entire Baltic Sea. Estimates of benthic bioturbation, longevity and size (i.e. 'stability') and total energy and nutrient contents differed between coastal areas and inner versus outer sites. Benthic traits indicative of an enhanced nutrient turnover but a decreased capacity for temporal nutrient retention dominated inner sites, while outer sites were often dominated by larger individuals, exhibiting traits that are likely to enhance nutrient uptake and retention. The overarching similarities in benthic trait expression between more eutrophied inner vs. less affected outer coastal sites across the Baltic Sea suggest that benthic communities might contribute in a similar manner to nutrient recycling and retention in the coastal filter over large geographical scales.
  •  
3.
  • Josefson, A. B., et al. (författare)
  • Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna
  • 2012
  • Ingår i: Marine Ecology-Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 455, s. 33-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Degradation and burial of organic matter in sediments are important processes for oxygen dynamics and thus for the outcome of eutrophication. To assess the influences of bottom-water oxygen and macroinvertebrate fauna function on these processes, we investigated distributions of phytopigments as markers of phytoplankton detritus in surface sediments across the Baltic Sea. We compared pigment concentrations among sites with different oxygen levels and different values of a bioturbation potential index combining abundance, individual size and species-specific rankings of mobility and sediment reworking (BPI). BPI was positively influenced by oxygen availability, with a threshold at 45 to 90 mu mol l(-1), below which it decreased rapidly to zero in anoxic sediments. There was significant co-variation between pigments and both oxygen and BPI after accounting for differences in pigment concentrations with sediment depth and among different sub-areas, which were largely attributed to different inputs of phytoplankton. Negative correlations between pigments and both BPI and oxygen in communities dominated by Macoma balthica and Scoloplos armiger, and between pigments and BPI in the upper sediment layers inhabited by Monoporeia affinis and Pontoporeia femorata, suggested increased degradation with increasing bioturbation. Positive correlations between pigments and BPI in communities dominated by Marenzelleria spp. suggested mainly burial, which also was supported by positive correlations between Marenzelleria abundance and both sediment water content and the freshness of buried organic material. It is hypothesised that a shift from sensitive resident species like Monoporeia or Scoloplos to the more hypoxia-tolerant Marenzelleria will slow down overall degradation rates, counteracting hypoxia formation in the bottom water. ELEOESCHGER D, 1991, MARINE ECOLOGY-PROGRESS SERIES, V70, P83
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy