SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Joshi Jaideep) "

Sökning: WFRF:(Joshi Jaideep)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harrison, Sandy P., et al. (författare)
  • Eco-evolutionary optimality as a means to improve vegetation and land-surface models
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:6, s. 2125-2141
  • Forskningsöversikt (refereegranskat)abstract
    • Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
  •  
2.
  • Joshi, Jaideep, et al. (författare)
  • Emergence of social inequality in the spatial harvesting of renewable public goods
  • 2020
  • Ingår i: PloS Computational Biology. - : Public Library Science. - 1553-734X .- 1553-7358. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatially extended ecological public goods, such as forests, grasslands, and fish stocks, are at risk of being overexploited by selfish consumers-a phenomenon widely recognized as the 'tragedy of the commons.' The interplay of spatial and ecological dimensions introduces new features absent in non-spatial ecological contexts, such as consumer mobility, local information availability, and strategy evolution through social learning in neighborhoods. It is unclear how these features interact to influence the harvesting and dispersal strategies of consumers. To answer these questions, we develop and analyze an individual-based, spatially structured, eco-evolutionary model with explicit resource dynamics. We report the following findings. (1) When harvesting efficiency is low, consumers evolve a sedentary consumption strategy, through which the resource is harvested sustainably, but with harvesting rates far below their maximum sustainable value. (2) As harvesting efficiency increases, consumers adopt a mobile 'consume-and-disperse' strategy, which is sustainable, equitable, and gives maximum sustainable yield. (3) A further increase in harvesting efficiency leads to large-scale overexploitation. (4) If costs of dispersal are significant, increased harvesting efficiency also leads to social inequality between frugal sedentary consumers and overexploitative mobile consumers. Whereas overexploitation can occur without social inequality, social inequality always leads to overexploitation. Thus, we identify four conditions that-while being characteristic of technological progress in modern societies-risk social inequality and overexploitation: high harvesting efficiency, moderately low costs of dispersal, high consumer density, and the tendency of consumers to adopt new strategies rapidly. We also show how access to global information-another feature widespread in modern societies-helps mitigate these risks.Author summary: Throughout history, humans have shaped ecological landscapes, which in turn have influenced human behavior. This mutual dependence is epitomized when human consumers harvest a spatially extended renewable resource. Simple models predict that, when multiple consumers harvest a shared resource, each is tempted to harvest faster than his/her peers, putting the resource at risk of overexploitation. It is unclear, however, how the interplay among resource productivity, consumer mobility, and social learning in spatial ecological public goods games influences evolved consumer behavior. Here, using an individual-based, spatially structured, eco-evolutionary model of consumers and a resource, we find that increasing resource productivity initially promotes efficient resource use by enabling mobile consumption strategies, but eventually leads to inequality and overexploitation, as overexploitative mobile consumers coexist with frugal sedentary consumers. When consumers are impatient (i.e., eager to imitate successful strategies) or myopic (i.e., unaware of conditions outside of their neighborhoods), inequality and overexploitation tend to aggravate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy