SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Joyal J.) "

Sökning: WFRF:(Joyal J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fu, Z. J., et al. (författare)
  • Dietary omega-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 101:4, s. 879-888
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Retinopathy of prematurity (ROP) is a vision-threatening disease in premature infants. Serum adiponectin (APN) concentrations positively correlate with postnatal growth and gestational age, important risk factors for ROP development. Dietary omega-3 (n-3) long-chain polyunsaturated fatty acids (omega-3 LCPUFAs) suppress ROP and oxygen-induced retinopathy (OIR) in a mouse model of human ROP, but the mechanism is not fully understood. Objective: We examined the role of APN in ROP development and whether circulating APN concentrations are increased by dietary omega-3 LCPUFAs to mediate the protective effect in ROP. Design: Serum APN concentrations were correlated with ROP development and serum omega-3 LCPUFA concentrations in preterm infants. Mouse OIR was then used to determine whether omega-3 LCPUFA supplementation increases serum APN concentrations, which then suppress retinopathy. Results: We found that in preterm infants, low serum APN concentrations positively correlate with ROP, and serum APN concentrations positively correlate with serum omega-3 LCPUFA concentrations. In mouse OIR, serum total APN and bioactive high-molecular-weight APN concentrations are increased by omega-3 LCPUFA feed. White adipose tissue, where APN is produced and assembled in the endoplasmic reticulum, is the major source of serum APN. In mouse OIR, adipose endoplasmic reticulum stress is increased, and APN production is suppressed. omega-3 LCPUFA feed in mice increases APN production by reducing adipose endoplasmic reticulum stress markers. Dietary omega-3 LCPUFA suppression of neovascularization is reduced from 70% to 10% with APN deficiency. APN receptors localize in the retina, particularly to pathologic neovessels. Conclusion: Our findings suggest that increasing APN by omega-3 LCPUFA supplementation in total parental nutrition for preterm infants may suppress ROP.
  •  
2.
  • Chen, J., et al. (författare)
  • Propranolol inhibition of beta-adrenergic receptor does not suppress pathologic neovascularization in oxygen-induced retinopathy
  • 2012
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404. ; 53:6, s. 2968-77
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Retinopathy of prematurity (ROP) is a leading cause of blindness in children and is, in its most severe form, characterized by uncontrolled growth of vision-threatening pathologic vessels. Propranolol, a nonselective beta-adrenergic receptor blocker, was reported to protect against pathologic retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). Based on this single animal study using nonstandard evaluation of retinopathy, clinical trials are currently ongoing to evaluate propranolol treatment in stage 2 ROP patients who tend to experience spontaneous disease regression and are at low risk of blindness. Because these ROP patients are vulnerable premature infants who are still in a fragile state of incomplete development, the efficacy of propranolol treatment in retinopathy needs to be evaluated thoroughly in preclinical animal models of retinopathy and potential benefits weighed against potential adverse effects. METHODS: Retinopathy was induced by exposing neonatal mice to 75% oxygen from postnatal day (P) 7 to P12. Three routes of propranolol treatment were assessed from P12 to P16: oral gavage, intraperitoneal injection, or subcutaneous injection, with doses varying between 2 and 60 mg/kg/day. At P17, retinal flatmounts were stained with isolectin and quantified with a standard protocol to measure vasoobliteration and pathologic neovascularization. Retinal gene expression was analyzed with qRT-PCR using RNA isolated from retinas of control and propranolol-treated pups. RESULTS: None of the treatment approaches at any dose of propranolol (up to 60 mg/kg/day) were effective in preventing the development of retinopathy in a mouse model of OIR, evaluated using standard techniques. Propranolol treatment also did not change retinal expression of angiogenic factors including vascular endothelial growth factor. CONCLUSIONS: Propranolol treatment via three routes and up to 30 times the standard human dose failed to suppress retinopathy development in mice. These data bring into question whether propranolol through inhibition of beta-adrenergic receptors is an appropriate therapeutic approach for treating ROP.
  •  
3.
  • Fu, Z. J., et al. (författare)
  • Retinal glial remodeling by FGF21 preserves retinal function during photoreceptor degeneration
  • 2021
  • Ingår i: Iscience. - : Elsevier BV. - 2589-0042. ; 24:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The group of retinal degenerations, retinitis pigmentosa (RP), comprises more than 150 genetic abnormalities affecting photoreceptors. Finding degenerative pathways common to all genetic abnormalities may allow general treatment such as neuroprotection. Neuroprotection may include enhancing the function of cells that directly support photoreceptors, retinal pigment epithelial cells, and Muller glia. Treatment with fibroblast growth factor 21 (FGF21), a neuro-protectant, from postnatal week 4-10, during rod and cone loss in P23H mice (an RP model) with retinal degeneration, preserved photoreceptor function and normalized Muller glial cell morphology. Single-cell transcriptomics of retinal cells showed that FGF21 receptor Fgfr1 was specifically expressed in Muller glia/astrocytes. Of all retinal cells, FGF21 predominantly affected genes in Muller glia/astrocytes with increased expression of axon development and synapse formation pathway genes. Therefore, enhancing retinal glial axon and synapse formation with neurons may preserve retinal function in RP and may suggest a general therapeutic approach for retinal degenerative diseases.
  •  
4.
  • Shao, Z., et al. (författare)
  • Cytochrome P450 2C8 omega 3-Long-Chain Polyunsaturated Fatty Acid Metabolites Increase Mouse Retinal Pathologic Neovascularization-Brief Report
  • 2014
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 34:3, s. 581-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary 3-long-chain polyunsaturated fatty acids (3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. Approach and Results The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a 3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both 3LCPUFA and 6LCPUFA and antiangiogenic role of sEH in 3LCPUFA metabolism were corroborated in aortic ring assays. Conclusions Our results suggest that CYP2C 3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.
  •  
5.
  • Fu, Z. J., et al. (författare)
  • Dyslipidemia in retinal metabolic disorders
  • 2019
  • Ingår i: Embo Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid-rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.
  •  
6.
  • Gan, Li-Ming, 1969, et al. (författare)
  • Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4-24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis.
  •  
7.
  • Tomita, Y., et al. (författare)
  • Vitreous metabolomics profiling of proliferative diabetic retinopathy
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 64, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Proliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR. Methods We analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27-80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration. Results We identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024). Conclusions/interpretation These results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy