SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jung Byeongju) "

Sökning: WFRF:(Jung Byeongju)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jung, Byeongju, et al. (författare)
  • Effects of episodic fluid flow on hydrocarbon migration in the Newport-Inglewood Fault Zone, Southern California
  • 2014
  • Ingår i: Geofluids. - : Wiley. - 1468-8115 .- 1468-8123. ; 14:2, s. 234-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water-rock reactions. Time-varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large-scale fluid flow and petroleum accumulation along a northern section of the Newport-Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build-up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1-1000 millidarcys (10(-15)-10(-12)m(2)) and fault pressures fluctuate within 10-80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24000years, assuming a seismically induced fluid flow event occurs every 2000years. This episodic petroleum migration model could be more geologically important than a continuous-flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.
  •  
3.
  • Porter, Richard T. J., et al. (författare)
  • Techno-economic assessment of CO2 quality effect on its storage and transport : CO(2)QUEST An overview of aims, objectives and main findings
  • 2016
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 54, s. 662-681
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides an overview of the aims, objectives and the main findings of the CO(2)QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS.
  •  
4.
  • Tian, Liang, et al. (författare)
  • Integrated simulations of CO2 spreading and pressure response in the multilayer saline aquifer of South Scania Site, Sweden
  • 2016
  • Ingår i: Greenhouse Gases. - : Wiley. - 2152-3878. ; 6:4, s. 531-545
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrated modeling approach/workflow, in which a series of mathematical models of different levels of complexity are applied to evaluate the geological storage capacity of the Scania Site, southwest Sweden, is presented. The storage formation at the site is a layered formation limited by bounding fault zones, and injection is assumed to take place from one existing deep borehole into all layers. A semi-analytical model for two-phase flow is first used to evaluate the pressure response and related parameter sensitivity, as well as the first estimates of acceptable injection rates. These results are then used to guide the more detailed numerical simulations that address both pressure response and plume migration. The vertical equilibrium (VE) model is used to obtain a preliminary understanding of the plume migration with a larger number of simulations. Finally the full TOUGH2/ECO2N simulations are performed for the most detailed analyses of pressure responses and plume migration. Throughout, the results of the different modeling approaches are compared against each other. It is concluded that the key limiting factor for the storage capacity at the site in the injection scenario considered is the fast CO2 migration within the high permeability layer. Future studies can address alternative injection scenarios, including horizontal injection wells and injection to other layers than the high permeability layer.
  •  
5.
  • Yang, Zhibing, et al. (författare)
  • Assessing CO2 storage capacity in the Dalders Monocline of the Baltic Sea Basin using dynamic models of varying complexity
  • 2015
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 43, s. 149-150
  • Tidskriftsartikel (refereegranskat)abstract
    • The first dynamic modeling study of CO2 geological storage in the Baltic Sea basin is presented. The focus has been on the southern part of the Dalders Monocline. The objective is to get order-of-magnitude estimates of the behavior of the formations during potential industrial scale CO2 injection and subsequent storage periods, with an emphasis on two important aspects of CO2 storage: the injection-induced pressure impact and the long-term upslope migration. In order to maximize the confidence in the model predictions, this work employs a set of different modeling approaches of varying complexity, including a semi-analytical model, a sharp-interface vertical equilibrium (VE) model and a TOUGH2-ECO2N model. The semi-analytical model provides fast estimation of the pressure buildup as well as its sensitivity to variation of the reservoir parameters. Given a certain pressure threshold, a maximum injection rate is estimated from the semi-analytical model and is then fed to the numerical models. The pressure buildup predicted by the numerical models fall close to that by the semi-analytical solution. Extensive modeling of the post-injection upslope migration and trapping evolution together with sensitivity analysis suggests that it is unlikely for CO2 to leak through the north end of the formation. Under the currently considered scenario, the dominant constraint for the storage capacity is the pressure buildup. The pressure limited capacity (Cp) of the southern Dalders Monocline for the scenario studied here is estimated to be about 100 Mt for a 50-year injection duration. Cp is found to increase with permeability as Cp ∼ k0.926. Given the knowledge of the dominant constraint for capacity, storage optimization can be specifically targeted on the injectivity issue and operational strategies can be designed to relieve the pressure buildup (e.g., by adding brine production wells, using horizontal wells).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy