SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jung Min Gi) "

Sökning: WFRF:(Jung Min Gi)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Park, Jimin, et al. (författare)
  • Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries
  • 2022
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 7:1, s. 401-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Potassium (K) is considered to be the most suitable anode material for rechargeable K batteries because of its high theoretical capacity (686 mAh g(-1)) and low redox potential (-2.93 V vs SHE). However, uneven electrodeposition of K during cycling usually leads to the growth of dendrites, resulting in low Coulombic efficiency and compromising battery safety. Herein, we develop a strategy for stabilizing K metal through simple interface control. The conductive passivation layer can be controllably designed by a spontaneous chemical reaction when a K metal foil is kept in contact with a liquid-phase potassium-polysulfide (PPS); this guides the formation of an electronically and ionically conductive solid electrolyte interphase layer including K2S compound, enabling dense K plating with a dendrite-free morphology. Compared to the bare K metal anode, the PPS-treated K metal anode demonstrates superior cycling stability in symmetric half cells and full cells using a TiS2 cathode under practical constraints.
  •  
2.
  • Ahmed, Mohammad Shamsuddin, et al. (författare)
  • Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 8:21
  • Forskningsöversikt (refereegranskat)abstract
    • Metal–sulfur batteries (MSBs) provide high specific capacity due to the reversible redox mechanism based on conversion reaction that makes this battery a more promising candidate for next-generation energy storage systems. Recently, along with elemental sulfur (S8), sulfurized polyacrylonitrile (SPAN), in which active sulfur moieties are covalently bounded to carbon backbone, has received significant attention as an electrode material. Importantly, SPAN can serve as a universal cathode with minimized metal–polysulfide dissolution because sulfur is immobilized through covalent bonding at the carbon backbone. Considering these unique structural features, SPAN represents a new approach beyond elemental S8 for MSBs. However, the development of SPAN electrodes is in its infancy stage compared to conventional S8 cathodes because several issues such as chemical structure, attached sulfur chain lengths, and over-capacity in the first cycle remain unresolved. In addition, physical, chemical, or specific treatments are required for tuning intrinsic properties such as sulfur loading, porosity, and conductivity, which have a pivotal role in improving battery performance. This review discusses the fundamental and technological discussions on SPAN synthesis, physicochemical properties, and electrochemical performance in MSBs. Further, the essential guidance will provide research directions on SPAN electrodes for potential and industrial applications of MSBs.
  •  
3.
  • Shin, Jiho, et al. (författare)
  • Targeted Synthesis of Two Super-Complex Zeolites with Embedded Isoreticular Structures
  • 2016
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 55:16, s. 4928-4932
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel structural coding approach combining structure solution, prediction, and the targeted synthesis of new zeolites with expanding complexity and embedded isoreticular structures was recently proposed. Using this approach, the structures of two new zeolites in the RHO family, PST-20 and PST-25, were predicted and synthesized. Herein, by extending this approach, the next two higher generation members of this family, PST-26 and PST-28, have been predicted and synthesized. These two zeolites have much larger unit cell volumes (422 655 Å3 and 614 912 Å3, respectively) than those of the lower generations. Their crystallization was confirmed by a combination of both powder X-ray and electron diffraction techniques. Aluminate and water concentrations in the synthetic mixture were found to be the two most critical factors influencing the structural expansion of embedded isoreticular zeolites under the synthetic conditions studied herein.
  •  
4.
  • Guo, Peng, et al. (författare)
  • A zeolite family with expanding structural complexity and embedded isoreticular structures
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524, s. 74-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal-organic frameworks(1-3), but not for the more widely applicable zeolites(4,5), where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed(6,7), not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural 'coding' within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic angstroms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic angstroms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.
  •  
5.
  • Jeon, Jae Bum, et al. (författare)
  • Photo-annealed amorphous titanium oxide for perovskite solar cells
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 11:41, s. 19488-19496
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron selective layers are important to the efficiency, stability and hysteresis of perovskite solar cells. Photo-annealing is a low-cost, roll-to-roll-compatible process that can be applied to the post-treatment fabrication of sol-gel based metal oxide layers. Here, we fabricate an amorphous titanium oxide electron selective layer at a low temperature in a dry atmosphere using a UV light annealing system and compare it with a thermal annealing process. Active oxygen species are created by using UV light to promote hydrolysis and condense the TiO2 precursor, which removes organic ligands effectively. The photo-annealed TiO2-based perovskite solar cell has a power conversion efficiency of 19.37% without hysteresis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy