SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Junghans Marion) "

Sökning: WFRF:(Junghans Marion)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dulio, Valeria, et al. (författare)
  • Beyond target chemicals : updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data
  • 2024
  • Ingår i: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.Results: As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.Conclusions: This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools. Graphical Abstract: (Figure presented.)
  •  
2.
  • Dulio, Valeria, et al. (författare)
  • The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC) : let’s cooperate!
  • 2020
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 32:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
  •  
3.
  •  
4.
  • Junghans, Marion, et al. (författare)
  • Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures.
  • 2006
  • Ingår i: Aquatic toxicology (Amsterdam, Netherlands). - : Elsevier BV. - 0166-445X. ; 76:2, s. 93-110
  • Tidskriftsartikel (refereegranskat)abstract
    • In freshwater systems located in agricultural areas, organisms are exposed to a multitude of toxicologically and structurally different pesticides. For regulatory purposes it is of major importance whether the combined hazard of these substances can be predictively assessed from the single substance toxicity. For artificially designed multi-component mixtures, it has been shown that the mixture toxicity can be predicted by concentration addition (CA) in case of similarly acting substances and by independent action (IA), if mixtures are composed of dissimilarly acting substances. This study aimed to analyse whether these concepts may also be used to predictively assess the toxicity of environmentally realistic mixtures. For this purpose a mixture of 25 pesticides, which reflects a realistic exposure scenario in field run-off water, was studied for its effects on the reproduction of the freshwater alga Scenedesmus vacuolatus. The toxicity of the tested mixtures showed a good predictability by CA. This is consistent with the finding that the toxicity was dominated by a group of similarly acting photosystem II inhibitors, although the mixture included substances with diverse and partly unknown mechanisms of action. IA slightly underestimated the actual mixture toxicity. However, the EC(50) values that can be derived from each prediction, according to CA respectively IA, only differed by a factor of 1.3. The finding of such a small difference is partly explainable by the fact that only few components dominate the mixture scenario in terms of so-called toxic units (TUs). This connection is established by developing an equation that allows to calculate the maximum possible ratio between corresponding predictions of effect concentrations by IA and CA for any given ratio of the TUs of mixture components, irrespective of their individual concentration-response functions and independent from their mechanisms of action. To evaluate whether small quantitative differences between EC(50) values predicted by CA and IA are an exception or rather the rule for agricultural exposure scenarios, this calculation was applied on an additional set of 18 pesticide exposure scenarios that were taken from the literature. For these scenarios, EC(50) values predicted by IA can never exceed those predicted by CA by more than a factor of 2.5. The findings of this study support the view that CA provides a precautious but not overprotective approach to the predictive hazard assessment of pesticide mixtures under realistic exposure scenarios, irrespective of the similarity or dissimilarity of their mechanisms of action.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (3)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ahrens, Lutz (2)
Backhaus, Thomas, 19 ... (2)
Scholze, Martin (2)
Alygizakis, Nikiforo ... (2)
Čirka, Ľuboš (2)
Deviller, Geneviève (2)
visa fler...
Slobodnik, Jaroslav (2)
Schymanski, Emma L. (2)
Ågerstrand, Marlene (2)
Hollender, Juliane (2)
Lopez de Alda, Miren (2)
Dulio, Valeria (2)
O'Toole, Simon (2)
Vorkamp, Katrin (2)
Koschorreck, Jan (2)
van Bavel, Bert (1)
van den Brink, Paul (1)
Martin, Jonathan W. (1)
Munthe, John (1)
Engwall, Magnus, 196 ... (1)
Vrana, Branislav (1)
Faust, Michael (1)
Covaci, Adrian (1)
Ng, Kelsey (1)
Lundy, Lian (1)
Thomaidis, Nikolaos ... (1)
Fatta-Kassinos, Desp ... (1)
Haglund, Peter (1)
Hollert, Henner (1)
Schlabach, Martin (1)
Solomon, Keith R. (1)
Hernandez, Felix (1)
Kruve, Anneli (1)
Lamoree, Marja (1)
Hanson, Mark (1)
Laskowski, Ryszard (1)
Rudén, Christina (1)
Brack, Werner (1)
Posthuma, Leo (1)
Barcelo, Damia (1)
Hilscherova, Klara (1)
Allan, Ian (1)
Ruedel, Heinz (1)
Sengl, Manfred (1)
von der Ohe, Peter C ... (1)
Sumpter, John P (1)
Moermond, Caroline T ... (1)
Wheeler, James R. (1)
Leonards, Pim (1)
Herzke, Dorte (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Stockholms universitet (2)
Umeå universitet (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy