SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Junninen K.) "

Sökning: WFRF:(Junninen K.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, Lisa J., et al. (författare)
  • Differing Mechanisms of New Particle Formation at Two Arctic Sites
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:4
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.
  •  
2.
  •  
3.
  • Hakkinen, S. A. K., et al. (författare)
  • Long-term volatility measurements of submicron atmospheric aerosol in Hyytiala, Finland
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:22, s. 10771-10786
  • Tidskriftsartikel (refereegranskat)abstract
    • The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiala, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 degrees C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 degrees C to 280 degrees C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm(-3)). On average 19% of the total aerosol mass remained in the particulate phase at 280 degrees C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 degrees C, but could not explain it completely: most of the time a notable fraction of this nonvolatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 degrees C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 degrees C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 degrees C) fraction of aerosol mass.
  •  
4.
  • Halme, P., et al. (författare)
  • Challenges of ecological restoration : Lessons from forests in northern Europe
  • 2013
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 167, s. 248-256
  • Forskningsöversikt (refereegranskat)abstract
    • The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many ecosystem services remain at high level. However, extensive areas of northern forests are heavily exploited and have lost a major part of their biodiversity value. There is a strong requirement to restore these areas towards a more natural condition in order to meet the targets of the Convention on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology of the target ecosystem should be established with the need for restoration carefully assessed and the outcome properly monitored. Finally, we identify the most important challenges that need to be solved in order to carry out efficient restoration with powerful and long-term positive impacts on biodiversity: coping with unpredictability, maintaining connectivity in time and space, assessment of functionality, management of conflicting interests and social restrictions and ensuring adequate funding. © 2013 Elsevier Ltd.
  •  
5.
  • Petaja, T., et al. (författare)
  • Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens : physical characterization and new particle formation
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 7:10, s. 2705-2720
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of atmospheric aerosol particles in Marseille and Athens were investigated. The studies were performed in Marseille, France, during July 2002 and in Athens, Greece, during June 2003. The aerosol size distribution and the formation and growth rates of newly formed particles were characterized using Differential Mobility Particle Sizers. Hygroscopic properties were observed using a Hygroscopic Tandem Differential Mobility Analyzer setup. During both campaigns, the observations were performed at suburban, almost rural sites, and the sites can be considered to show general regional background behavior depending on the wind direction. At both sites there were clear pattern for both aerosol number concentration and hygroscopic properties. Nucleation mode number concentration increased during the morning hours indicating new particle formation, which was observed during more than 30% of the days. The observed formation rate was typically more than 1 cm(-3) s(-1), and the growth rate was between 1.2 - 9.9 nm h(-1). Based on hygroscopicity measurements in Athens, the nucleation mode size increase was due to condensation of both water insoluble and water soluble material. However, during a period of less anthropogenic influence, the growth was to a larger extent due to water insoluble components. When urban pollution was more pronounced, growth due to condensation of water soluble material dominated.
  •  
6.
  • Almeida, Joao, et al. (författare)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
7.
  • Bernes, C., et al. (författare)
  • What is the impact of active management on biodiversity in boreal and temperate forests set aside for conservation or restoration? : A systematic map
  • 2015
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The biodiversity of forests set aside from forestry is often considered best preserved by non-intervention. In many protected forests, however, remaining biodiversity values are legacies of past disturbances, e.g. recurring fires, grazing or small-scale felling. These forests may need active management to keep the characteristics that were the reason for setting them aside. Such management can be particularly relevant where lost ecological values need to be restored. In this review, we identified studies on a variety of interventions that could be useful for conserving or restoring any aspect of forest biodiversity in boreal and temperate regions. Since the review is based on Swedish initiatives, we have focused on forest types that are represented in Sweden, but such forests exist in many parts of the world. The wide scope of the review means that the set of studies is quite heterogeneous. As a first step towards a more complete synthesis, therefore, we have compiled a systematic map. Such a map gives an overview of the evidence base by providing a database with descriptions of relevant studies, but it does not synthesise reported results. Methods: Searches for literature were made using online publication databases, search engines, specialist websites and literature reviews. Search terms were developed in English, Finnish, French, German, Russian and Swedish. We searched not only for studies of interventions in actual forest set-asides, but also for appropriate evidence from commercially managed forests, since some practices applied there may be useful for conservation or restoration purposes too. Identified articles were screened for relevance using criteria set out in an a priori protocol. Descriptions of included studies are available in an Excel file, and also in an interactive GIS application that can be accessed at an external website. Results: Our searches identified nearly 17,000 articles. The 798 articles that remained after screening for relevance described 812 individual studies. Almost two-thirds of the included studies were conducted in North America, whereas most of the rest were performed in Europe. Of the European studies, 58 % were conducted in Finland or Sweden. The interventions most commonly studied were partial harvesting, prescribed burning, thinning, and grazing or exclusion from grazing. The outcomes most frequently reported were effects of interventions on trees, other vascular plants, dead wood, vertical stand structure and birds. Outcome metrics included e.g. abundance, richness of species (or genera), diversity indices, and community composition based on ordinations. Conclusions: This systematic map identifies a wealth of evidence on the impact of active management practices that could be utilised to conserve or restore biodiversity in forest set-asides. As such it should be of value to e.g. conservation managers, researchers and policymakers. Moreover, since the map also highlights important knowledge gaps, it could inspire new primary research on topics that have so far not been well covered. Finally, it provides a foundation for systematic reviews on specific subtopics. Based on our map of the evidence, we identified four subtopics that are sufficiently covered by existing studies to allow full systematic reviewing, potentially including meta-analysis. © 2015 Bernes et al.
  •  
8.
  • Crippa, M., et al. (författare)
  • Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 14:12, s. 6159-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
  •  
9.
  • Kirkby, Jasper, et al. (författare)
  • Ion-induced nucleation of pure biogenic particles
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood(1). Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours(2). It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere(3,4), and that ions have a relatively minor role(5). Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded(6,7). Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of a-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  •  
10.
  • Paasonen, Pauli, et al. (författare)
  • Warming-induced increase in aerosol number concentration likely to moderate climate change
  • 2013
  • Ingår i: Nature Geoscience. - 1752-0908. ; 6:6, s. 438-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei(1-4). Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate the warming caused by greenhouse gases(1). In the future, tightening of controls on anthropogenic aerosol and precursor vapour emissions to achieve higher air quality may weaken this beneficial effect(5-)7. Natural aerosols, too, might affect future warming(2,3,8,9). Here we analyse long-term observations of concentrations and compositions of aerosol particles and their biogenic precursor vapours in continental mid-and high-latitude environments. We use measurements of particle number size distribution together with boundary layer heights derived from reanalysis data to show that the boundary layer burden of cloud condensation nuclei increases exponentially with temperature. Our results confirm a negative feedback mechanism between the continental biosphere, aerosols and climate: aerosol cooling effects are strengthened by rising biogenic organic vapour emissions in response to warming, which in turn enhance condensation on particles and their growth to the size of cloud condensation nuclei. This natural growth mechanism produces roughly 50% of particles at the size of cloud condensation nuclei across Europe. We conclude that biosphere-atmosphere interactions are crucial for aerosol climate effects and can significantly influence the effects of anthropogenic aerosol emission controls, both on climate and air quality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy