SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jurkowski Wiktor) "

Sökning: WFRF:(Jurkowski Wiktor)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basmarke-Wehelie, Rahma, et al. (författare)
  • The complement regulator CD46 is bactericidal to Helicobacter pylori and blocks urease activity
  • 2011
  • Ingår i: Gastroenterology. - Baltimore : Elsevier BV. - 0016-5085 .- 1528-0012. ; 141:3, s. 918-928
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: CD46 is a C3b/C4b binding complement regulator and a receptor for several human pathogens. We examined the interaction between CD46 and Helicobacter pylori (a bacterium that colonizes the human gastric mucosa and causes gastritis), peptic ulcers, and cancer.METHODS: Using gastric epithelial cells, we analyzed a set of H pylori strains and mutants for their ability to interact with CD46 and/or influence CD46 expression. Bacterial interaction with full-length CD46 and small CD46 peptides was evaluated by flow cytometry, fluorescence microscopy, enzyme-linked immunosorbent assay, and bacterial survival analyses.RESULTS: H pylori infection caused shedding of CD46 into the extracellular environment. A soluble form of CD46 bound to H pylori and inhibited growth, in a dose- and time-dependent manner, by interacting with urease and alkyl hydroperoxide reductase, which are essential bacterial pathogenicity-associated factors. Binding of CD46 or CD46-derived synthetic peptides blocked the urease activity and ability of bacteria to survive in acidic environments. Oral administration of one CD46 peptide eradicated H pylori from infected mice.CONCLUSIONS: CD46 is an antimicrobial agent that can eradicate H pylori. CD46 peptides might be developed to treat H pylori infection.
  •  
2.
  • Jurkowski, Wiktor, et al. (författare)
  • Ligand binding properties of human galanin receptors
  • 2013
  • Ingår i: Molecular membrane biology. - : Informa UK Limited. - 0968-7688 .- 1464-5203. ; 30:2, s. 206-216
  • Tidskriftsartikel (refereegranskat)abstract
    • The galanin receptor family comprises of three members, GalR1, GalR2 and GalR3, all belonging to the G-protein-couple receptor superfamily. All three receptors bind the peptide hormone galanin, but show distinctly different binding properties to other molecules and effects on intracellular signaling. To gain insight on the molecular basis of receptor subtype specificity, we have generated a three-dimensional model for each of the galanin receptors based on its homologs in the same family. We found significant differences in the organization of the binding pockets among the three types of receptors, which might be the key for specific molecular recognition of ligands. Through docking of fragments of the galanin peptide and a number of ligands, we investigated the involvement of transmembrane and loop residues in ligand interaction.
  •  
3.
  • Paulsen, Peter Aasted, et al. (författare)
  • The C-terminal cavity of the Na,K-ATPase analyzed by docking and electrophysiology
  • 2013
  • Ingår i: Molecular membrane biology. - : Informa UK Limited. - 0968-7688 .- 1464-5203. ; 30:2, s. 195-205
  • Tidskriftsartikel (refereegranskat)abstract
    • The Na,K-ATPase is essential to all animals, since it maintains the electrochemical gradients that energize the plasma membrane. Naturally occurring inhibitors of the pump from plants have been used pharmaceutically in cardiac treatment for centuries. The inhibitors block the pump by binding on its extracellular side and thereby locking it. To explore the possibilities for designing an alternative way of targeting the pump function, we have examined the structural requirements for binding to a pocket that accommodates the two C-terminal residues, YY, in the crystal structures of the pump. To cover the sample space of two residues, we first performed docking studies with the 400 possible dipeptides. For validation of the in silico predictions, pumps with 13 dipeptide sequences replacing the C-terminal YY were expressed in Xenopus laevis oocytes and examined with electrophysiology. Our data show a significant correlation between the docking scores from two different methods and the experimentally determined sodium affinities, which strengthens the previous hypothesis that sodium binding is coupled to docking of the C-terminus. From the dipeptides that dock the best and better than wild-type YY, it may therefore be possible to develop specific drugs targeting a previously unexplored binding pocket in the sodium pump.
  •  
4.
  • Runesson, Johan, 1980-, et al. (författare)
  • Determining receptor–ligand interaction of human galanin receptor type 3
  • 2010
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186 .- 1872-9754. ; 57:7, s. 804-811
  • Tidskriftsartikel (refereegranskat)abstract
    • Galanin is a neuropeptide found throughout the central and peripheral nervous systems of a wide range of species, ranging from human and mouse to frog and tuna. Galanin mediates its physiological roles through three receptors (GalR1–3), all members of the G-protein coupled receptor family. In mapping these roles, receptor subtype selective ligands are crucial tools. To facilitate the ligand design, data on receptor structure and interaction points are of great importance. The current study investigates the mechanism by which galanin interacts with GalR3. Mutated receptors were tested with competitive binding analysis in vitro. Our studies identify six mutagenic constructs that lost receptor affinity completely, despite being expressed at the cell surface. Mutations of the Tyr1033.33 in transmembrane helix (TM) III, His2516.51 in TM VI, Arg2737.35 or His2777.39 in TM VII, Phe2636.63 or Tyr2707.32 in the extracellular loop III all result in complete reduction of ligand binding. In addition, docking studies of an in silico model of GalR3 propose that four of the identified residues interact with pharmacophores situated within the galanin(2–6) sequence. This study provides novel insights into the interaction between ligands and GalR3 and highlights the requirement for correct design of targeting ligands.
  •  
5.
  • Wacker, Soeren J., et al. (författare)
  • Identification of Selective Inhibitors of the Potassium Channel Kv1.1-1.2(3) by High-Throughput Virtual Screening and Automated Patch Clamp
  • 2012
  • Ingår i: ChemMedChem. - : Wiley. - 1860-7179 .- 1860-7187. ; 7:10, s. 1775-1783
  • Tidskriftsartikel (refereegranskat)abstract
    • Two voltage-dependent potassium channels, Kv1.1 (KCNA1) and Kv1.2 (KCNA2), are found to co-localize at the juxtaparanodal region of axons throughout the nervous system and are known to co-assemble in heteromultimeric channels, most likely in the form of the concatemer Kv1.11.2(3). Loss of the myelin sheath, as is observed in multiple sclerosis, uncovers the juxtaparanodal region of nodes of Ranvier in myelinated axons leading to potassium conductance, resulting in loss of nerve conduction. The selective blocking of these Kv channels is therefore a promising approach to restore nerve conduction and function. In the present study, we searched for novel inhibitors of Kv1.11.2(3) by combining a virtual screening protocol and electrophysiological measurements on a concatemer Kv1.11.2(3) stably expressed in Chinese hamster ovary K1 (CHO-K1) cells. The combined use of four popular virtual screening approaches (eHiTS, FlexX, Glide, and Autodock-Vina) led to the identification of several compounds as potential inhibitors of the Kv1.11.2(3) channel. From 89 electrophysiologically evaluated compounds, 14 novel compounds were found to inhibit the current carried by Kv1.11.2(3) channels by more than 80?% at 10 mu M. Accordingly, the IC50 values calculated from concentrationresponse curve titrations ranged from 0.6 to 6 mu M. Two of these compounds exhibited at least 30-fold higher potency in inhibition of Kv1.11.2(3) than they showed in inhibition of a set of cardiac ion channels (hERG, Nav1.5, and Cav1.2), resulting in a profile of selectivity and cardiac safety. The results presented herein provide a promising basis for the development of novel selective ion channel inhibitors, with a dramatically lower demand in terms of experimental time, effort, and cost than a sole high-throughput screening approach of large compound libraries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy