SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jurvelin J. S.) "

Sökning: WFRF:(Jurvelin J. S.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ojanen, X., et al. (författare)
  • Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study
  • 2017
  • Ingår i: Journal of Biomechanics. - : Elsevier BV. - 0021-9290. ; 65, s. 96-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were characterized using dynamic and stress-relaxation testing at the apparent-level and with creep nanoindentation at the tissue-level. In addition, bone tissue elasticity was determined using scanning acoustic microscope (SAM). Tissue composition and collagen crosslinks were assessed using Raman micro-spectroscopy and high performance liquid chromatography (HPLC), respectively. Values of material parameters were obtained from finite element (FE) models by optimizing tissue-level creep and apparent-level stress-relaxation to experimental nanoindentation and unconfined compression testing values, respectively, utilizing the second order Prony series to depict viscoelasticity. FE simulations showed that tissue-level equilibrium elastic modulus (Eeq) increased with increasing crystallinity (r = 0.730, p =.011) while at the apparent-level it increased with increasing hydroxylysyl pyridinoline content (r = 0.718, p =.019). In addition, the normalized shear modulus g1 (r = −0.780, p =.005) decreased with increasing collagen ratio (amide III/CH2) at the tissue-level, but increased (r = 0.696, p =.025) with increasing collagen ratio at the apparent-level. No significant relations were found between the measured or simulated viscoelastic parameters at the tissue- and apparent-levels nor were the parameters related to tissue elasticity determined with SAM. However, only Eeq, g2 and relaxation time τ1 from simulated viscoelastic values were statistically different between tissue- and apparent-levels (p <.01). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone.
  •  
2.
  • Malo, M K H, et al. (författare)
  • Ultrasound Backscatter Measurements of Intact Human Proximal Femurs - Relationships of ultrasound parameters with tissue structure and mineral density.
  • 2014
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 64:Online April 24, 2014, s. 240-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasound reflection and backscatter parameters are related to mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the antero-posterior and latero-medial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analysed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R(2)=0.44 and 0.45), cadaver age (R(2)=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R(2)=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to trabecular bone structural properties and mineral density.
  •  
3.
  • Ojanen, X, et al. (författare)
  • Relationships between tissue composition and viscoelastic properties in human trabecular bone.
  • 2015
  • Ingår i: Journal of Biomechanics. - : Elsevier BV. - 1873-2380 .- 0021-9290. ; 48:2, s. 269-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Trabecular bone is a metabolically active tissue with a high surface to volume ratio. It exhibits viscoelastic properties that may change during aging. Changes in bone properties due to altered metabolism are sensitively revealed in trabecular bone. However, the relationships between material composition and viscoelastic properties of bone, and their changes during aging have not yet been elucidated. In this study, trabecular bone samples from the femoral neck of male cadavers (n=21) aged 17-82 years were collected and the tissue level composition and its associations with the tissue viscoelastic properties were evaluated by using Raman microspectroscopy and nanoindentation, respectively. For composition, collagen content, mineralization, carbonate substitution and mineral crystallinity were evaluated. The calculated mechanical properties included reduced modulus (Er), hardness (H) and the creep parameters (E1, E2, η1and η2), as obtained by fitting the experimental data to the Burgers model. The results indicated that the creep parameters, E1, E2, η1and η2, were linearly correlated with mineral crystallinity (r=0.769-0.924, p<0.001). Creep time constant (η2/E2) tended to increase with crystallinity (r=0.422, p=0.057). With age, the mineralization decreased (r=-0.587, p=0.005) while the carbonate substitution increased (r=0.728, p<0.001). Age showed no significant associations with nanoindentation parameters. The present findings suggest that, at the tissue-level, the viscoelastic properties of trabecular bone are related to the changes in characteristics of bone mineral. This association may be independent of human age.
  •  
4.
  • Ryd, L., et al. (författare)
  • Pre-Osteoarthritis: Definition and Diagnosis of an Elusive Clinical Entity
  • 2015
  • Ingår i: Cartilage. - : SAGE Publications. - 1947-6035 .- 1947-6043. ; 6:3, s. 156-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. An attempt to define pre-osteoarthritis (OA) versus early OA and definitive osteoarthritis. Methods. A group of specialists in the field of cartilage science and treatment was formed to consider the nature of OA onset and its possible diagnosis. Results. Late-stage OA, necessitating total joint replacement, is the end stage of a biological process, with many previous earlier stages. Early-stage OA has been defined and involves structural changes identified by arthroscopy or radiography. The group argued that before the "early-stage OA" there must exist a stage where cellular processes, due to the presence of risk factors, have kicked into action but have not yet resulted in structural changes. The group suggested that this stage could be called "pre-osteoarthritis" (pre-OA). Conclusions. The group suggests that defining points of initiation for OA in the knee could be defined, for example, by traumatic episodes or surgical meniscectomy. Such events may set in motion metabolic processes that could be diagnosed by modern MRI protocols or arthroscopy including probing techniques before structural changes of early OA have developed. Preventive measures should preferably be applied at this pre-OA stage in order to stop the projected OA epidemic.
  •  
5.
  • Koistinen, Arto P, et al. (författare)
  • Short-term exercise-induced improvements in bone properties are for the most part not maintained during aging in hamsters.
  • 2014
  • Ingår i: Experimental Gerontology. - : Elsevier BV. - 1873-6815 .- 0531-5565. ; 51, s. 46-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise during growth affects composition, structure and mechanical properties of bone. In this study we investigated whether the beneficial effects of exercise during the early growth phase have long-lasting effects or not. Female Syrian golden hamsters (total n=152) were used in this study. Half of the hamsters had access to running wheels during their rapid growth phase (from 1 to 3months of age). The hamsters were sacrificed at the ages of 1, 3, 12, and 15months. The diaphysis of the mineralized humerus was analyzed with microCT and subjected to three-point-bending mechanical testing. The trabecular bone in the tibial metaphysis was also analyzed with microCT. The collagen matrix of the humerus bone was studied by tensile testing after decalcification. The weight of the hamsters as well as the length of the bone and the volumetric bone mineral density (BMDvol) of the humerus was higher in the running group at the early age (3months). Moreover, the mineralized bone showed improved mechanical properties in humerus and had greater trabecular thickness in the subchondral bone of tibia in the runners. However, by the age of 12 and 15months, these differences were equalized with the sedentary group. The tensile strength and Young's modulus of decalcified humerus were higher in the runners at early stage, indicating a stronger collagen network. In tibial metaphysis, trabecular thickness was significantly higher for the runners in the old age groups (12 and 15months). Our study demonstrates that physical exercise during growth improves either directly or indirectly through weight gain bone properties of the hamsters. However, the beneficial effects were for the most part not maintained during aging.
  •  
6.
  •  
7.
  • Turunen, Mikael J., et al. (författare)
  • Bone mineral crystal size and organization vary across mature rat bone cortex
  • 2016
  • Ingår i: Journal of Structural Biology. - : Elsevier BV. - 1047-8477. ; 195:3, s. 337-344
  • Tidskriftsartikel (refereegranskat)abstract
    • The macro- and micro-features of bone can be assessed by using imaging methods. However, nano- and molecular features require more detailed characterization, such as use of e.g., vibrational spectroscopy and X-ray scattering. Nano- and molecular features also affect the mechanical competence of bone tissue. The aim of the present study was to reveal the effects of mineralization and its alterations on the mineral crystal scale, by investigating the spatial variation of molecular composition and mineral crystal structure across the cross-section of femur diaphyses in young rats, and healthy and osteoporotic mature rats (N = 5). Fourier transform infrared spectroscopy and scanning small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with high spatial resolution were used at identical locations over the whole cross-section. This allowed quantification of point-by-point information about the spatial distribution of mineral crystal volume. All measured parameters (crystal dimensions, degree of orientation and predominant orientation) varied across the cortex. Specifically, the crystal dimensions were lower in the central cortex than in the endosteal and periosteal regions. Mineral crystal orientation followed the cortical circumference in the periosteal and endosteal regions, but was less well-oriented in the central regions. Central cortex is formed rapidly during development through endochondral ossification. Since rats possess no osteonal remodeling, this bone remains (until old age). Significant linear correlations were observed between the dimensional and organizational parameters, e.g., between crystal length and degree of orientation (R2 = 0.83, p < 0.001). Application of SAXS/WAXS provides valuable information on bone nanostructure and its constituents, effects of diseases and, prospectively, mechanical competence.
  •  
8.
  • Turunen, Mikael J., et al. (författare)
  • Composition and microarchitecture of human trabecular bone change with age and differ between anatomical locations
  • 2013
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 54:1, s. 118-125
  • Tidskriftsartikel (refereegranskat)abstract
    • The microarchitecture of trabecular bone adapts to its mechanical loading environment according to Wolff's law and alters with age. Trabecular bone is a metabolically active tissue, thus, its molecular composition and microarchitecture may vary between anatomical locations as a result of the local mechanical loading environment. No comprehensive comparison of composition and microarchitecture of trabecular bone in different anatomical locations has been conducted. Therefore, the objective of this study was to compare the molecular composition and microarchitecture, evaluated with Fourier transform infrared (FTIR) microspectroscopy and micro-computed tomography (mu CT), respectively, in the femoral neck, greater trochanter and calcaneus of human cadavers. Specimens were harvested from 20 male human cadavers (aged 17-82 years) with no known metabolic bone diseases. Significant differences were found in composition and microarchitecture of trabecular bone between the anatomical locations. Compositional differences were primarily observed between the calcaneus and the proximal femur sites. Mineralization was higher in the greater trochanter than in the calcaneus (+2%, p<0.05) and crystallinity was lowest in the calcaneus (-24%, p<0.05 as compared to the femoral neck). Variation in the composition of trabecular bone within different parts of the proximal femur was only minor. Collagen maturity was significantly lower in greater trochanter than in femoral neck (-8%, p<0.01) and calcaneus (-5%, p<0.05). The greater trochanter possessed a less dense trabecular bone microarchitecture compared to femoral neck or calcaneus. Age related changes were mainly found in the greater trochanter. Significant correlations were found between the composition and microarchitecture of trabecular bone in the greater trochanter and calcaneus, indicating that both composition and microarchitecture alter similarly. This study provides new information about composition and microarchitecture of trabecular bone in different anatomical locations and their alterations with age with respect to the anatomical loading environments. (C) 2013 Elsevier Inc. All rights reserved.
  •  
9.
  • Turunen, Mikael J, et al. (författare)
  • Evaluation of composition and mineral structure of callus tissue in rat femoral fracture.
  • 2014
  • Ingår i: Journal of Biomedical Optics. - 1083-3668. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT. Callus formation is a critical step for successful fracture healing. Little is known about the molecular composition and mineral structure of the newly formed tissue in the callus. The aim was to evaluate the feasibility of small angle x-ray scattering (SAXS) to assess mineral structure of callus and cortical bone and if it could provide complementary information with the compositional analyses from Fourier transform infrared (FTIR) microspectroscopy. Femurs of 12 male Sprague-Dawley rats at 9 weeks of age were fractured and fixed with an intramedullary 1.1 mm K-wire. Fractures were treated with the combinations of bone morphogenetic protein-7 and/or zoledronate. Rats were sacrificed after 6 weeks and both femurs were prepared for FTIR and SAXS analysis. Significant differences were found in the molecular composition and mineral structure between the fracture callus, fracture cortex, and control cortex. The degree of mineralization, collagen maturity, and degree of orientation of the mineral plates were lower in the callus tissue than in the cortices. The results indicate the feasibility of SAXS in the investigation of mineral structure of bone fracture callus and provide complementary information with the composition analyzed with FTIR. Moreover, this study contributes to the limited FTIR and SAXS data in the field.
  •  
10.
  • Vasara, Anna I, et al. (författare)
  • Immature porcine knee cartilage lesions show good healing with or without autologous chondrocyte transplantation.
  • 2006
  • Ingår i: Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. - : Elsevier BV. - 1063-4584 .- 1522-9653. ; 14:10, s. 1066-74
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The purpose of this study was to find out how deep chondral lesions heal in growing animals spontaneously and after autologous chondrocyte transplantation. METHODS: A 6mm deep chondral lesion was created in the knee joints of 57 immature pigs and repaired with autologous chondrocyte transplantation covered with periosteum or muscle fascia, with periosteum only, or left untreated. After 3 and 12 months, the repair tissue was evaluated with International Cartilage Repair Society (ICRS) macroscopic grading, modified O'Driscoll histological scoring, and staining for collagen type II and hyaluronan, and with toluidine blue and safranin-O staining for glycosaminoglycans. The repair tissue structure was also examined with quantitative polarized light microscopy and indentation analysis of the cartilage stiffness. RESULTS: The ICRS grading indicated nearly normal repair tissue in 65% (10/17) after the autologous chondrocyte transplantation and 86% (7/8) after no repair at 3 months. At 1 year, the repair tissue was nearly normal in all cases in the spontaneous repair group and in 38% (3/8) in the chondrocyte transplantation group. In most cases, the cartilage repair tissue stained intensely for glycosaminoglycans and collagen type II indicating repair tissue with true constituents of articular cartilage. There was a statistical difference in the total histological scores at 3 months (P=0.028) with the best repair in the spontaneous repair group. A marked subchondral bone reaction, staining with toluidine blue and collagen type II, was seen in 65% of all animals. CONCLUSIONS: The spontaneous repair ability of full thickness cartilage defects of immature pigs is significant and periosteum or autologous chondrocytes do not bring any additional benefits to the repair.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy