SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jury Michael 1984 ) "

Sökning: WFRF:(Jury Michael 1984 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christoffersson, Jonas, 1986-, et al. (författare)
  • Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device
  • 2019
  • Ingår i: Biofabrication. - : Institute of Physics (IOP). - 1758-5082 .- 1758-5090. ; 11:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3D orientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in the HA backbone, azide-modified cell adhesion motifs (linear and cyclic RGD peptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclic RGD peptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.
  •  
2.
  • Jury, Michael, 1984-, et al. (författare)
  • Bioorthogonally Cross‐Linked Hyaluronan–Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication
  • 2022
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.
  •  
3.
  • Jury, Michael, 1984- (författare)
  • Modular Hyaluronan-Based Hydrogels for 3D Cell Culture and Bioprinting
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Three-dimensional (3D) cell culture facilitates development of biological relevant assays for drug screening and toxicity testing. Compared to conventional 2D cell culture, cells cultured in 3D can more accurately mimic human tissues and organs and thus provide ex vivo data with potentially better predictive value for cancer research, pharmacology, and toxicology, reducing the need for animal models, improving experimental reproducibility, and reducing time and costs in drug development. The most widely used options for scaffold-based 3D cell culture are, however, based on poorly defined biologically derived extracellular matrix (ECM) with limited possibilities to tailor material properties and that are difficult to combine with state-of-the art biofabrication techniques.   The overall aim this thesis was to design and explore modular hyaluronan (HA) based ECM-mimicking hydrogels with tuneable physiochemical properties and biofunctionalities, for development of advanced 3D cell models and biofabrication. The thesis work is presented in five papers. In paper I, we used copper free click chemistry for both hydrogel cross-linking and functionalization with fibronectin derived peptide sequences for culture of human induced pluripotent-derived hepatocytes in a perfused microfluidic system. The tuneable and bioorthogonal cross-linking enabled both retention of high cell viabilities and fabrication of a functional liver-on-chip solution. In paper II, we combined the developed HA-based hydrogel system with homo- and heterodimerizing helix-loop-helix peptides for modulation of both cross-linking density and biofunctionalization. We further demonstrated the possibilities to use these hydrogels as bioinks for 3D bioprinting where both the molecular composition and the physical properties of the printed structures could be dynamically altered, providing new avenues for four-dimensional (4D) bioprinting. In paper III we investigated the possibilities to chemically conjugate full size recombinant human laminin-521 (LN521) in the HA-based hydrogels system using copper-free click chemistry, with the aim to enable 3D culture and 3D bioprinting of neurons. We quantified the impact of using different linkers to tether LN521 and the influence of LN-functionalization on the structural and mechanical properties of the hydrogels. We show that both differentiated and non-differentiated neuroblastoma cells and long-term self-renewing neuroepithelial stem cells (lt-NES) remained viable in the hydrogels. The hydrogels also had a protected effect on lt-NES during syringe ejection and bioprinting. In paper IV, we used HA-based hydrogels modified with peptides sequences derived from fibronectin and laminin for culture of fetal primary astrocytes (FPA). We explored both the interactions between the hydrogels and FPA and possibilities to 3D bioprint FPAs.  Finally, in paper V, we developed HA-nanocellulose composite hydrogels with the aim to increase printing fidelity and enable fabrication of multi-layered bioprinted structures without the use of a support bath. In addition to HA, we used wood-fibre derived nanocellulose (NC) to increase the viscosity of the bioink during the printing process.  The developed biorthogonal and modular hydrogel systems provide a large degree of flexibility that allows for encapsulation and culture of different cell types and processing using different techniques, which can contribute to further exploration of fabrication of biologically relevant tissue and disease models.   
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy