SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Källbom Susanna) "

Sökning: WFRF:(Källbom Susanna)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Källbom, Susanna (författare)
  • Characterisation of thermally modified wood for use as component in biobased building materials
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The building sector shows growing interest in biobased building materials. Wood components, here defined as ground or milled wood, i.e. by-products (residuals/residues) from wood processing, such as sawdust or shavings, are valuable raw materials for new types of durable biocomposites suitable for outdoor building applications. An important research question related to such composites is how to characterise and enhance molecular interactions, i.e. adhesion properties, between wood and binder components. Another challenge is the hygroscopicity of the wood component, which can lead to dimensional changes and interfacial cracks during exposure to varying moisture conditions. Thermal modification of wood reduces its hygroscopicity, thereby, increasing its durability, e.g. its dimensional stability and resistance to biodeterioration. The hypothesis is that the use of thermally modified wood (TMW) components in biocomposites can enhance their durability properties and, at the same time, increase the value of residues from TMW processing. The main objective of this thesis is to study and analyse the surface and sorption properties of TMW components using inverse gas chromatography (IGC), dynamic vapour sorption (DVS), X-ray photoelectron spectroscopy (XPS), and the multicycle Wilhelmy plate method. The aim is to gain a better understanding of the surface and sorption characteristics of TMW components to enable the design of optimal adhesion properties and material combinations (compatibility) for use in biocomposites, especially suitable for outdoor and moist building material applications. Samples of TMW and unmodified wood (UW) components of Norway spruce (Picea abies Karst.) and Scots pine (Pinus sylvestris L.) heartwood were prepared and analysed with respect to surface energetics, hygroscopicity, liquid sorption and resulting swelling. The work also included analysis of surface chemical composition, as well as influences of extractives and moisture sorption history. The effect of using TMW components in a wood plastic composite (WPC) exposed to a series of soaking-drying cycles in water was studied with a focus on water sorption, swelling and micromorphological changes. The IGC analyses indicate that TMW components of spruce have a more heterogeneous surface energy character, i.e. a distinctly higher dispersive part of surface energy for low surface coverages, than do UW components. This is suggested to be due to the higher percentage of hydrophobic extractives present in TMW samples. Lewis acid-base analysis indicates that both UW and TMW components from spruce have a predominantly basic character and an enhanced basicity for the latter ones. Results show that both the hygroscopicity and water liquid uptake are lower for TMW than for UW samples. Unexpectedly, a significantly lower rate of water uptake was found for the extracted UW of pine heartwood than for non-extracted samples. In the former case, this is presumably due to contamination effects from water-soluble extractives, which increase capillary flow into wood voids, as proven by a decrease in water surface tension. Water uptake as well as swelling was significantly reduced for the WPCs with TMW and hot-water extracted UW components compared with the WPCs with UW components. This reduction also resulted in fewer wood component-polymer interfacial cracks in the WPCs with the modified wood components.
  •  
2.
  • Källbom, Susanna, et al. (författare)
  • Effects of water soaking-drying cycles on thermally modified spruce wood-plastic composites
  • 2020
  • Ingår i: Wood and Fiber Science. - : SOC WOOD SCI TECHNOL. - 0735-6161. ; 52:1, s. 2-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall aim of this work was to gain more insight on the potential of modified wood (TMW) components for use in wood-thermoplastic composites (WPCs). Laboratory-scale TMWPCs were produced, and the effects of severe water soaking-drying cycles on the samples were studied. Water sorption behavior and resulting dimensional and micromorphological changes were also studied, and the results were compared with those of unmodified wood-plastic composites (UWPCs) used as control. The TMW was prepared by cutting a spruce board into half and subjecting one-half to an atmosphere of superheated steam at atmospheric pressure with a peak temperature of 210 degrees C, with the other unmodified wood (UW) half as a control. The TMW and UW components were then prepared by a Wiley mill and thereafter sifted into smaller (mesh 0.20-0.40 mm) and larger (mesh 0.40-0.63 mm) size fractions. A portion of the wood components were also subjected to hydrothermal extraction (HE). Composite samples with these different wood components, polypropylene (PP) matrix, and maleated PP (MAPP) as coupling agent (50/48/2 wood/PP/MAPP ratio by weight) were then prepared by using a Brabender mixer followed by hot pressing. The matching micromorphology of the composites before and after the soaking-drying cycles was analyzed using a surface preparation technique based on ultraviolet-laser ablation combined with scanning electron microscopy. The results of the water absorption tests showed, as hypothesized, a significantly reduced water absorption and resulting thickness swelling at the end of a soaking cycle for the TMWPCs compared with the controls (UWPCs). The water absorption was reduced with about 50-70% for TMWPC and 60-75% for HE-TMWPC. The thickness swelling for TMWPCs was reduced with about 40-70% compared with the controls. Similarly, the WPCs with HE-UW components absorbed about 20-45% less moisture and showed a reduced thickness swelling of about 25-40% compared with the controls. These observations also were in agreement with the micromorphology analysis of the composites before and after the moisture cycling which showed a more pronounced wood-plastic interfacial cracking (de-bonding) as well as other microstructure changes in the controls compared with those prepared with TMW and HE-UW components. Based on these observations, it is suggested that these potential bio-based building materials show increased potential durability for applications in harsh outdoor environments, in particular TMWPCs with a well-defined and comparably small size fractions of TMW components.
  •  
3.
  • Källbom, Susanna, et al. (författare)
  • Liquid sorption, swelling and surface energy properties of unmodified and thermally modified Scots pine heartwood after extraction
  • 2018
  • Ingår i: Holzforschung. - : Walter de Gruyter GmbH. - 0018-3830 .- 1437-434X. ; 72:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of extractives removal on liquid sorption, swelling and surface energy properties of unmodified wood (UW) and thermally modified Scots pine heartwood (hW) (TMW) was studied. The extraction was performed by a Soxtec procedure with a series of solvents and the results were observed by the multicycle Wilhelmy plate method, inverse gas chromatography (IGC) and Fourier transform infrared (FTIR) spectroscopy. A significantly lower rate of water uptake was found for the extracted UW, compared with the unextracted one. This is due to a contamination effect in the latter case from water-soluble extractives increasing the capillary flow into the wood voids, proven by the decreased water surface tension. The swelling in water increased after extraction 1.7 and 3 times in the cases of UW and TMW, respectively. The dispersive part of the surface energy was lower for the extracted TMW compared to the other sample groups, indicating an almost complete removal of the extractives. The FTIR spectra of the extracts showed the presence of phenolic compounds but also resin acids and aliphatic compounds.
  •  
4.
  •  
5.
  • Källbom, Susanna, et al. (författare)
  • Sorption and surface energy properties of thermally modified spruce wood components
  • 2018
  • Ingår i: Wood and Fiber Science. - : Society of Wood Science and Technology. - 0735-6161. ; 50:3, s. 346-357
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this work is to study the water vapor sorption and surface energy properties of thermally modified wood (TMW) components, ie wood processing residuals in the form of sawdust. The thermal modification was performed on spruce wood components using a steam-pressurized laboratoryscale reactor at two different temperature (T) and relative humidity (RH) conditions, T = 150 degrees C and RH = 100% (TMW150), and T = 180 degrees C and RH = 46% (TMW180). A dynamic vapor sorption (DVS) technique was used to determine water vapor sorption isotherms of the samples for three adsorption-desorption cycles at varying RH between 0% and 95%. Inverse gas chromatography (IGC) was used to study the surface energy properties of the samples, including dispersive and polar characteristics. The DVS results showed that the EMC was reduced by 30-50% for the TMW samples compared with control samples of unmodified wood (UW) components. A lower reduction was, however, observed for the second and third adsorption cycles compared with that of the first cycle. Ratios between EMC of TMW and that of UW samples were lower for the TMW180 compared with the TMW150 samples, and an overall decrease in such EMC ratios was observed at higher RH for both TMW samples. The IGC results showed that the dispersive contribution to the surface energy was higher at lower surface coverages, ie representing the higher energy sites, for the TMW compared with the UW samples. In addition, an analysis of the acid-base properties indicated a higher KB than KA number, ie a higher basic than acidic contribution to the surface energy, for all the samples. A higher KB number was also observed for the TMW compared with the UW samples, suggested to relate to the presence of ether bonds from increased lignin and/or extractives content at the surface. The KB was lower for TMW180 compared with TMW150, as a result of higher modification temperature of the first, leading to cleavage of these ether bonds.
  •  
6.
  • Källbom, Susanna, 1988- (författare)
  • Surface characterisation of thermally modified spruce wood and influence of water vapour sorption
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Today there is growing interest within the construction sector to increase the proportion of biobased building materials made from renewable resources. By-products or residuals from wood processing could in this case be valuable resources for manufacturing new types of biocomposites. An important research question related to wood-based biocomposites is how to characterise molecular interactions between the different components in the composite. The hygroscopic character of wood and its water sorption properties are also crucial. Thermal modification (or heat treatment) of wood results in a number of enhanced properties such as reduced hygroscopicity and improved dimensional stability as well as increased resistance to microbiological decay.In this thesis, surface characteristics of thermally modified wood components (often called wood fibres or particles) and influencing effects from moisture sorption have been analysed using a number of material characterisation techniques. The aim is to increase the understanding in how to design efficient material combinations for the use of such wood components in biocomposites. The specific objective was to study surface energy characteristics of thermally modified spruce (Picea abies Karst.) under influences of water vapour sorption. An effort was also made to establish a link between surface energy and surface chemical composition. The surface energy of both thermally modified and unmodified wood components were studied at different surface coverages using inverse gas chromatography (IGC), providing information about the heterogeneity of the surface energy. The water vapour sorption behaviour of the wood components was studied using the dynamic vapour sorption (DVS) method, and their surface chemical composition was studied by means of X-ray photoelectron spectroscopy (XPS). Additionally, the morphology of the wood components was studied with scanning electron microscopy (SEM).The IGC analysis indicated a more heterogeneous surface energy character of the thermally modified wood compared with the unmodified wood. An increase of the dispersive surface energy due to exposure to an increased relative humidity (RH) from 0% to 75% RH at 30 ˚C was also indicated for the modified samples. The DVS analysis indicated an increase in equilibrium moisture content (EMC) in adsorption due to the exposure to 75% RH. Furthermore, the XPS results indicated a decrease of extractable and a relative increase of non-extractable compounds due to the exposure, valid for both the modified and the unmodified wood. The property changes due to the increased RH condition and also due to the thermal modification are suggested to be related to alterations in the amount of accessible hydroxyl groups in the wood surface. Recommendations for future work and implications of the results could be related to knowledge-based tailoring of new compatible and durable material combinations, for example when using thermally modified wood components in new types of biocomposites for outdoor applications.
  •  
7.
  • Källbom, Susanna, et al. (författare)
  • Surface chemical analysis and water vapour sorpion of thermally modified wood exposed to increased relative humidity
  • 2015
  • Ingår i: The Eighth European Conference on Wood Modification (ECWM8) 2015.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The increased interest in environmentally friendly building materials is accompanied with an increased need for research on thermally modified wood. Products made from recycling or reusing of thermally modified residuals will have advantages in terms of environmental aspects. Surface characteristics of thermally modified wood play an important role for the development of applications involving bonding processes, for example when using thermally modified wood residuals in biocomposites. Surface chemistry characteristics are important in developing such materials. A technique used for surface chemical analysis of the outermost surface is X‑ray photoelectron spectroscopy (XPS). Some surface chemical analyses of wood and modified wood can be found in Nzokou and Kamdem (2005), Inari et al. (2006), Bryne et al. (2010), Johansson et al. (2012), Rautkari et al. (2012). Furthermore, the influence of water and moisture has crucial effect on the properties of wood and wood products. Water vapour sorption properties of hygroscopic materials can be studied using a dynamic vapour sorption (DVS) instrument. Previous studies on thermally modified wood exposed to several sorption cycles using DVS have shown an increase in hysteresis during the first cycle, compared with unmodified wood (Hill et al., 2012). However, during the second and the third sorption cycle a reduction in sorption hysteresis was observed. The objective of this work was to study the surface chemical composition and water vapour sorption properties of thermally modified wood. In particular, an effort was made to study any influence on such properties due to a previous exposure to a high relative humidity (RH). Interpretations of the results indicate a decrease of extractable or volatile organic components and a relative increase of non-extractable components, for the high humidity-exposed samples. This could be due to remaining extractives migrating towards or redistribution at the wood surface layer as a result of moisture diffusion. The DVS results show that the thermally modified wood samples that had been exposed to the high relative humidity condition revealed a slight decrease of the hysteresis of the sorption isotherms. The opposite trend was furthermore seen for the unmodified wood.
  •  
8.
  • Källbom, Susanna, 1988-, et al. (författare)
  • Surface energy characteristics of refined fibres at different pressures
  • 2014
  • Ingår i: Proceedings of 10th Meeting of the Northern European Network for Wood Science & Engineering (WSE 2014). ; , s. 134-138
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Wood fibres were produced on the pilot scale refiner at the BioComposites Centre, Bangor University, from a commercially sourced mix of chipped wood. The fibres were produced at refiner pressure 4, 6, 8 and 10 bar and dried in the associated flash drier. Surface energy characterization of the refined fibres was performed using inverse gas chromatography (IGC). The dispersive part of the total surface energy was analysed for duplicates of fibre samples at the four different refiner pressures. Non-polar alkane probes were used for the dispersive surface energy analysis at different surface coverage. Results indicate that the processing pressure has an effect of the dispersive surface energy and IGC analysis could be developed as a tool both for process development and process control in refining fibres.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy