SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kóspál Ágnes) "

Sökning: WFRF:(Kóspál Ágnes)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cataldi, Gianni, et al. (författare)
  • The Surprisingly Low Carbon Mass in the Debris Disk around HD 32297
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 892:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas has been detected in a number of debris disks. It is likely secondary, i.e., produced by colliding solids. Here, we report ALMA Band 8 observations of neutral carbon in the CO-rich debris disk around the 15-30 Myr old A-type star HD 32297. We find that C-0 is located in a ring at similar to 110 au with an FWHM of similar to 80 au and has a mass of (3.5 0.2) x 10(-3) M-circle plus. Naively, such a surprisingly small mass can be accumulated from CO photodissociation in a time as short as similar to 10(4) yr. We develop a simple model for gas production and destruction in this system, properly accounting for CO self-shielding and shielding by neutral carbon, and introducing a removal mechanism for carbon gas. We find that the most likely scenario to explain both C-0 and CO observations is one where the carbon gas is rapidly removed on a timescale of order a thousand years and the system maintains a very high CO production rate of similar to 15 M-circle plus Myr(-1), much higher than the rate of dust grind-down. We propose a possible scenario to meet these peculiar conditions: the capture of carbon onto dust grains, followed by rapid CO re-formation and rerelease. In steady state, CO would continuously be recycled, producing a CO-rich gas ring that shows no appreciable spreading over time. This picture might be extended to explain other gas-rich debris disks.
  •  
2.
  • Pouilly, Kim, et al. (författare)
  • Accretion and magnetism on young eccentric binaries : DQ Tau and AK Sco
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 528:4, s. 6786-6806
  • Tidskriftsartikel (refereegranskat)abstract
    • The accretion and ejection of mass in pre-main-sequence (PMS) stars are key processes in stellar evolution as they shape the stellar angular momentum transport necessary for the stars' stability. Magnetospheric accretion on to classical T Tauri stars and low-mass PMS stars has been widely studied in the single-star case. This process cannot be directly transferred to PMS binary systems, as tidal and gravitation effects, and/or accretion from a circumbinary disc (with variable separation of the components in the case of eccentric orbits) are in place. This work examines the accretion process of two PMS eccentric binaries, DQ Tau and AK Sco, using high-resolution spectropolarimetric time series. We investigate how magnetospheric accretion can be applied to these systems by studying the accretion-related emission lines and the magnetic field of each system. We discover that both systems are showing signs of magnetospheric accretion, despite their slightly different configurations, and the weak magnetic field of AK Sco. Furthermore, the magnetic topology of DQ Tau A shows a change relative to the previous orbital cycle studied: previously dominated by the poloidal component, it is now dominated by the toroidal component. We also report an increase of the component's accretion and the absence of an accretion burst at the apastron, suggesting that the component's magnetic variation might be the cause of the inter-cycle variations of the system's accretion. We conclude on the presence of magnetospheric accretion for both systems, together with gravitational effects, especially for AK Sco, composed of more massive components.
  •  
3.
  • Pouilly, Kim, et al. (författare)
  • Accretion process, magnetic fields, and apsidal motion in the pre-main sequence binary DQ Tau
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 518:4, s. 5072-5088
  • Tidskriftsartikel (refereegranskat)abstract
    • Classical T Tauri stars (CTTSs) are young stellar objects that accrete materials from their accretion disc influenced by their strong magnetic field. The magnetic pressure truncates the disc at a few stellar radii and forces the material to leave the disc plane and fall onto the stellar surface by following the magnetic field lines. However, this global scheme may be disturbed by the presence of a companion interacting gravitationally with the accreting component. This work is aiming to study the accretion and the magnetic field of the tight eccentric binary DQ Tau, composed of two equal-mass (similar to 0.6 M-circle dot) CTTSs interacting at different orbital phases. We investigated the variability of the system using a high-resolution spectroscopic and spectropolarimetric monitoring performed with ESPaDOnS at the CFHT. We provide the first ever magnetic field analysis of this system, the Zeeman-Doppler imaging revealed a stronger magnetic field for the secondary than the primary (1.2 and 0.5 kG, respectively), but the small-scale fields analysed through Zeeman intensification yielded similar strengths (about 2.5 kG). The magnetic field topology and strengths are compatible with the accretion processes on CTTSs. Both components of this system are accreting, with a change of the main accretor during the orbital motion. In addition, the system displays a strong enhancement of the mass accretion rate at periastron and apastron. We also discovered, for the first time in this system, the apsidal motion of the orbital ellipse.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy