SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Königshoff Melanie) "

Sökning: WFRF:(Königshoff Melanie)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gerckens, Michael, et al. (författare)
  • Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:52, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
  •  
2.
  • Alsafadi, Hani N, et al. (författare)
  • Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery
  • 2020
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1044-1549. ; 62:6, s. 681-691
  • Forskningsöversikt (refereegranskat)abstract
    • Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
  •  
3.
  • Burgy, Olivier, et al. (författare)
  • New players in chronic lung disease identified at the European Respiratory Society International Congress in Paris 2018 : From microRNAs to extracellular vesicles
  • 2018
  • Ingår i: Journal of Thoracic Disease. - : AME Publishing Company. - 2072-1439 .- 2077-6624. ; 10, s. 2983-2987
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the first description of microRNAs (miRNAs) in 1993 (1) a large and growing number of studies has explored their roles across a variety of biomedical research disciplines, including lung biology. According to GENCODE (version 27) (2), 1881 of the >7,500 human small non-coding RNAs are miRNAs. These 20–25 nucleotide-long, regulatory RNAs are involved in the translational regulation of gene expression principally via binding to miRNA recognition elements largely in the 3' untranslated regions of target mRNAs. Upon binding they can induce mRNA degradation, deadenylation or inhibition of their translation, leading to decreased target gene expression (3). Originally described to play important roles in developmental biology, miRNAs have since been found to have significant roles in a multitude of biological processes. Expression levels of miRNAs vary greatly between cells and tissues, and aberrant levels of miRNA are associated with many diseases in humans. In fact, these non-coding RNA molecules are now recognized as major regulators in the development and progression of various chronic lung diseases, including cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma (4-9).
  •  
4.
  • Costa, Rita, et al. (författare)
  • A drug screen with approved compounds identifies amlexanox as a novel Wnt/β-catenin activator inducing lung epithelial organoid formation
  • 2021
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 178:19, s. 4026-4041
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Emphysema is an incurable disease characterized by loss of lung tissue leading to impaired gas exchange. Wnt/β-catenin signalling is reduced in emphysema, and exogenous activation of the pathway in experimental models in vivo and in human ex vivo lung tissue improves lung function and structure. We sought to identify a pharmaceutical able to activate Wnt/β-catenin signalling and assess its potential to activate lung epithelial cells and repair. Experimental Approach: We screened 1216 human-approved compounds for Wnt/β-catenin signalling activation using luciferase reporter cells and selected candidates based on their computationally predicted protein targets. We further performed confirmatory luciferase reporter and metabolic activity assays. Finally, we studied the regenerative potential in murine adult epithelial cell-derived lung organoids and in vivo using a murine elastase-induced emphysema model. Key Results: The primary screen identified 16 compounds that significantly induced Wnt/β-catenin-dependent luciferase activity. Selected compounds activated Wnt/β-catenin signalling without inducing cell toxicity or proliferation. Two compounds were able to promote organoid formation, which was reversed by pharmacological Wnt/β-catenin inhibition, confirming the Wnt/β-catenin-dependent mechanism of action. Amlexanox was used for in vivo evaluation, and preventive treatment resulted in improved lung function and structure in emphysematous mouse lungs. Moreover, gene expression of Hgf, an important alveolar repair marker, was increased, whereas disease marker Eln was decreased, indicating that amlexanox induces pro-regenerative signalling in emphysema. Conclusion and Implications: Using a drug screen based on Wnt/β-catenin activity, organoid assays and a murine emphysema model, amlexanox was identified as a novel potential therapeutic agent for emphysema.
  •  
5.
  • De Santis, Martina M, et al. (författare)
  • Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 1521-4095 .- 0935-9648. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
  •  
6.
  • Gerckens, Michael, et al. (författare)
  • Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling
  • 2019
  • Ingår i: Journal of visualized experiments : JoVE. - : MyJove Corporation. - 1940-087X. ; :144
  • Tidskriftsartikel (refereegranskat)abstract
    • Translation of novel discoveries to human disease is limited by the availability of human tissue-based models of disease. Precision-cut lung slices (PCLS) used as 3D lung tissue cultures (3D-LTCs) represent an elegant and biologically highly relevant 3D cell culture model, which highly resemble in situ tissue due to their complexity, biomechanics and molecular composition. Tissue slicing is widely applied in various animal models. 3D-LTCs derived from human PCLS can be used to analyze responses to novel drugs, which might further help to better understand the mechanisms and functional effects of drugs in human tissue. The preparation of PCLS from surgically resected lung tissue samples of patients, who experienced lung lobectomy, increases the accessibility of diseased and peritumoral tissue. Here, we describe a detailed protocol for the generation of human PCLS from surgically resected soft-elastic patient lung tissue. Agarose was introduced into the bronchoalveolar space of the resectates, thus preserving lung structure and increasing the tissue's stiffness, which is crucial for subsequent slicing. 500 µm thick slices were prepared from the tissue block with a vibratome. Biopsy punches taken from PCLS ensure comparable tissue sample sizes and further increase the amount of tissue samples. The generated lung tissue cultures can be applied in a variety of studies in human lung biology, including the pathophysiology and mechanisms of different diseases, such as fibrotic processes at its best at (sub-)cellular levels. The highest benefit of the 3D-LTC ex vivo model is its close representation of the in situ human lung in respect of 3D tissue architecture, cell type diversity and lung anatomy as well as the potential for assessment of tissue from individual patients, which is relevant to further develop novel strategies for precision medicine.
  •  
7.
  • Krauss-Etschmann, Susanne, et al. (författare)
  • Of flies, mice and men : a systematic approach to understanding the early life origins of chronic lung disease
  • 2013
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 68:4, s. 380-384
  • Forskningsöversikt (refereegranskat)abstract
    • Despite intensive research efforts, the aetiology of the majority of chronic lung diseases (CLD) in both, children and adults, remains elusive. Current therapeutic options are limited, providing only symptomatic relief, rather than treating the underlying condition, or preventing its development in the first place. Thus, there is a strong and unmet clinical need for the development of both, novel effective therapies and preventative strategies for CLD. Many studies suggest that modifications of prenatal and/or early postnatal lung development will have important implications for future lung function and risk of CLD throughout life. This view represents a fundamental change of current pathophysiological concepts and treatment paradigms, and holds the potential to develop novel preventative and/or therapeutic strategies. However, for the successful development of such approaches, key questions, such as a clear understanding of underlying mechanisms of impaired lung development, the identification and validation of relevant preclinical models to facilitate translational research, and the development of concepts for correction of aberrant development, all need to be solved. Accordingly, a European Science Foundation Exploratory Workshop was held where clinical, translational and basic research scientists from different disciplines met to discuss potential mechanisms of developmental origins of CLD, and to identify major knowledge gaps in order to delineate a roadmap for future integrative research.
  •  
8.
  • Lehmann, Mareike, et al. (författare)
  • Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology 06 Biological Sciences 0601 Biochemistry and Cell Biology
  • 2018
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored. Methods: We treated murine and human 3D ex vivo lung tissue cultures (3D-LTCs; generated from precision cut lung slices (PCLS)) as well as primary murine alveolar epithelial type II (pmATII) cells with Pirfenidone or Nintedanib. Murine 3D-LTCs or pmATII cells were derived from the bleomycin model of fibrosis. Early fibrotic changes were induced in human 3D-LTCs by a mixture of profibrotic factors. Epithelial and mesenchymal cell function was determined by qPCR, Western blotting, Immunofluorescent staining, and ELISA. Results: Low μM concentrations of Nintedanib (1 μM) and mM concentrations of Pirfenidone (2.5 mM) reduced fibrotic gene expression including Collagen 1a1 and Fibronectin in murine and human 3D-LTCs as well as pmATII cells. Notably, Nintedanib stabilized expression of distal lung epithelial cell markers, especially Surfactant Protein C in pmATII cells as well as in murine and human 3D-LTCs. Conclusions: Pirfenidone and Nintedanib exhibit distinct effects on murine and human epithelial cells, which might contribute to their anti-fibrotic action. Human 3D-LTCs represent a valuable tool to assess anti-fibrotic mechanisms of potential drugs for the treatment of IPF patients.
  •  
9.
  • Ota, Chiharu, et al. (författare)
  • Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.
  •  
10.
  • Ulke, Henrik M, et al. (författare)
  • The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in Idiopathic Pulmonary Fibrosis
  • 2019
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1535-4989. ; 61:6, s. 713-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Idiopathic pulmonary fibrosis (IPF) and lung cancer represent progressive lung diseases with a poor prognosis. IPF represents a risk factor for the development of lung cancer, and the incidence of lung cancer is increased in patients with IPF. Disease pathogenesis of IPF and lung cancer involves common genetic alterations, dysregulated pathways, and the emergence of hyperplastic and metaplastic epithelial cells. Here, we aimed to identify novel, common mediators that might contribute to epithelial cell reprogramming in IPF. Gene set enrichment analysis (GSEA) of publicly available non-small cell lung cancer (NSCLC) and IPF datasets revealed a common pattern of misregulated genes, linked to cell proliferation and transformation. The oncogene epithelial cell transforming sequence 2 (ECT2), a guanine nucleotide exchange factor (GEF) for Rho GTPases, was highly enriched in both, IPF and NSCLC, compared to non-diseased controls. Increased expression of ECT2 was verified by qPCR and Western blotting in bleomycin-induced lung fibrosis and human IPF tissue. Immunohistochemistry demonstrated strong expression of ECT2 staining in hyperplastic type II alveolar epithelial (ATII) cells in IPF, as well as its colocalization with PCNA, a well-known proliferation marker. Increased ECT2 expression coincided with enhanced proliferation of primary mouse ATII cells as analyzed by flow cytometric analysis. ECT2 knockdown in ATII cells resulted in decreased proliferation and collagen I expression in vitro. These data suggest that the oncogene ECT2 contributes to epithelial cell reprogramming in IPF and further underline the hyperplastic, proliferative ATII cell as a potential target in patients with IPF and lung cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy