SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(KAZAKOV Yevgen) "

Sökning: WFRF:(KAZAKOV Yevgen)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kazakov, Ye.O., et al. (författare)
  • Effect of plasma shaping and resonance location on minority ion temperature anisotropy in tokamak plasmas heated with ICRH
  • 2012
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 401:1, s. 012011-
  • Tidskriftsartikel (refereegranskat)abstract
    • Poloidal asymmetries of the impurity distribution, which are observed in tokamaks, may influence the impurity cross-field transport. Low field side ion cyclotron resonance heating (ICRH) often results in an inboard accumulation of impurities, which may in turn lead to an outward convective impurity flux. The temperature anisotropy of the ICRH-heated minority ions is identified to be one of the main parameters governing the impurity asymmetry strength. In the present work we analyze the effect of plasma shaping and the ICRH resonance location on the minority temperature anisotropy by means of the TORIC-SSFPQL modelling. We find that ellipticity reduces the anisotropy level due to the wave defocussing and broader absorption regions for the elongated plasmas. The temperature anisotropy decrease in case of the resonance layers located closer to the edge is caused by the significant reduction in heating power densities due to geometrical reasons.
  •  
2.
  • Kazakov, Ye O., et al. (författare)
  • Poloidal asymmetries due to ion cyclotron resonance heating
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:10, s. 105010-
  • Tidskriftsartikel (refereegranskat)abstract
    • The poloidal density asymmetry of impurity ions in ion cyclotron resonance heated (ICRH) discharges is calculated. The link between the asymmetry strength and ICRH and plasma parameters is quantified. The main parameter governing the asymmetry strength is identified to be the minority ion temperature anisotropy. Through numerical simulations with the full-wave TORIC code coupled to the Fokker-Planck quasilinear solver SSFPQL, the dependence of the anisotropy on various parameters, such as ICRH power, background density and temperature, minority and impurity concentration and toroidal wavenumber has been investigated. An approximate expression for the poloidal asymmetry of impurities as a function of plasma parameters, resonance location and ICRH power is given. A quantification of the link of the impurity asymmetry and ICRH heating is valuable not only for understanding the changes in the cross-field transport but also for the possibilities to use the asymmetry measurements as diagnostics.
  •  
3.
  •  
4.
  • KOVTUN, Yurii V., et al. (författare)
  • ICRF Plasma Production with the W7-X Like Antenna in the Uragan-2M Stellarator
  • 2022
  • Ingår i: Plasma and Fusion Research. - : Japan Society of Plasma Science and Nuclear Fusion Research. - 1880-6821. ; 17:0
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of the plasma start-up with ICRH of U-2M RF discharges in H2+He mixture with newly implemented controlled gas H2 concentration are presented. The W7-X like ICRH antenna operated in monopole phasing with applied RF power of ∼ 100 kW. We investigated plasma start-up in the pressure range p = 6×10−4 - 9 × 10−2 Pa. Plasma production with an average density of up to Ne ∼ 1013 cm−3 was observed at frequencies the fundamental harmonic of the hydrogen cyclotron frequency.
  •  
5.
  • Van Eester, D., et al. (författare)
  • Minority and mode conversion heating in (He-3)-H JET plasmas
  • 2012
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 54:7, s. 074009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics.
  •  
6.
  •  
7.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
8.
  • Kazakov, Yevgen, 1984, et al. (författare)
  • Effect of impurities on the transition between minority ion and mode conversion ICRH heating in (3He)–H tokamak plasmas
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:5, s. 053014-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)–H plasmas relevant for the full-field initial ITER phase. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode conversion layer and significant reduction in the transition concentration of 3He minority ions, defined as the concentration at which the change from minority heating to the mode conversion regime occurs. In view of the installation of the new ITER-like wall at JET, it is important to evaluate the effect of Be and W impurities on ICRH scenarios in (3He)–H plasmas. In this paper, an approximate analytical expression for the transition concentration of 3He minority ions is derived as a function of plasma and ICRH parameters, and accounting for typical impurity species at JET. The accompanying 1D wave modelling supports the analytical results and suggests a potential experimental method to reduce the 3He level needed to achieve a specific heating regime by puffing a small amount of 4He ions additionally to (3He)–H plasma.
  •  
9.
  •  
10.
  • Kazakov, Yevgen, 1984, et al. (författare)
  • Enhanced ICRF (ion cyclotron range of frequencies) mode conversion efficiency in plasmas with two mode conversion layers
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 52:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ICRF (ion cyclotron range of frequencies) mode conversion regime efficiently provides local electron heating. The efficiency of mode conversion could be enhanced due to the interference between the reflected waves (Fuchs V et al 1995 Phys. Plasmas 2 1637–47). Plasmas of large-scale tokamaks can include multiple mode conversion layers which results in a complicated picture of mode conversion. The 1D theory of mode conversion in plasmas with two ion–ion hybrid resonance layers is presented. Using the phase-integral method the analytical expression for the conversion coefficient is derived within a cold plasma model. The possible enhancement of the mode conversion coefficient in such plasmas is shown. The developed theory is used to analyze the role of carbon ions in the (3He)H scenario of ICRF heating. As hot plasma effects may decrease the amount of power ultimately ending up on mode converted waves, a brief discussion of numerically obtained results but relying on a hot plasma model is included.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy