SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kabiri L.) "

Sökning: WFRF:(Kabiri L.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Blomgren, J., et al. (författare)
  • Putting co-creation into practice : lessons learned from developing a midwife-led quality improvement intervention
  • 2023
  • Ingår i: Global Health Action. - : Taylor and Francis Ltd.. - 1654-9716 .- 1654-9880. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Integrating evidence-based midwifery practices improves healthcare quality for women and newborns, but an evidence-to-practice gap exists. Co-created quality improvement initiatives led by midwives could bridge this gap, prevent resource waste and ensure intervention relevance. However, how to co-create a midwife-led quality improvement intervention has not been scientifically explored. Objective: The objective of this study is to describe the co-creation process and explore the needs and determinants of a midwife-led quality improvement targeting evidence-based midwifery practices. Methods: A qualitative deductive approach using the Consolidated Framework for Advancing Implementation Science was employed. An analysis matrix based on the framework was developed, and the data were coded according to categories. Data were gathered from interviews, focus group discussions, observations and workshops. New mothers and birth companions (n = 19) were included through convenience sampling. Midwives (n = 26), professional association representatives, educators, policymakers, managers, and doctors (n = 7) were purposely sampled. Results: The co-creation process of the midwife-led Quality Improvement intervention took place in four stages. Firstly, core elements of the intervention were established, featuring a group of midwife champions leading a quality improvement initiative using a train-the-trainers approach. Secondly, the intervention needs, context and determinants were explored, which showed knowledge and skills gaps, a lack of shared goals among staff, and limited resources. However, there was clear relevance, compatibility, and mission alignment for a midwife-led quality improvement at all levels. Thirdly, during co-creation workshops with new mothers and companions, the consensus was to prioritise improved intrapartum support, while workshops with midwives identified enhancing the use of birth positions and perineal protection as key focus areas for the forthcoming Quality Improvement intervention. Lastly, the findings guided intervention strategies, including peer-assisted learning, using existing structures, developing educational material, and building stakeholder relationships. Conclusions: This study provides a practical example of a co-creation process for a midwife-led quality improvement intervention, which can be relevant in different maternity care settings. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  •  
3.
  • Darmawan, C. C., et al. (författare)
  • Graphene-CNT hybrid material as potential thermal solution in electronics applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 190-193
  • Konferensbidrag (refereegranskat)abstract
    • Graphene and CNT have great potential in electronics applications. This work explored the possibility of integrating 1D CNT and 2D graphene into a 3D covalently bonded structure, i.e. a graphene-CNT hybrid material for thermal management application. The graphene-CNT hybrid material was later investigated morphologically and thermally to observe its heat dissipation capability.
  •  
4.
  • Gutierrez, Martí, 1993, et al. (författare)
  • Sintering of SiC enhanced copper paste for high power applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 151-156
  • Konferensbidrag (refereegranskat)abstract
    • In this work a Cu paste consisting in both micro and nanoparticles was produced. The copper paste was produced with different additive weight percentages of Ag coated SiC and sintered for 30min at 500°C under 6,5MPa in N2 atmosphere. The thermal resistance and composition of the resulting joints was studied. XPS and EDX measurements show no significant oxidation of the Cu after sintering, which is attributed to the combination of reductive agents in the paste and the inert atmosphere. SEM images of cross sections show contacts with no voids between the SiC particles and the copper matrix. Thermal conductivity measurements with laser flash analysis (LFA) show that the additive increases the effective thermal conductivity to more than double of that of the pure copper paste at 2% additive weight percentage, but bigger amounts yield smaller improvements and presumably would eventually worsen it.
  •  
5.
  • Han, H. X., et al. (författare)
  • Functionalization mediates heat transport in graphene nanoflakes
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by similar to 28 degrees C for a chip operating at 1,300 Wcm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.
  •  
6.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds
  • 2018
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 2018:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and carbon nanotubes have received much attention for thermal management application due to their unique thermal performance. Theoretical work suggests that a covalent bond can combine 1D carbon nanotubes with 2D graphene together to extend the excellent thermal property to three dimensions for heat dissipation. This paper experimentally demonstrates the high heat dissipation capability of a freestanding 3D multiwall carbon nanotube (MWCNT) and graphene hybrid material. Using high-resolution transmission electron microscopy and pulsed photothermal reflection measurement method, the covalent bonds between MWCNT and planar graphene are microscopically and numerically demonstrated. Thermal resistance at the junction with covalent bonds is 9×10^−10 Kelvin square meter per watt, which is three orders of magnitude lower than van der Waals contact. Joule heating method is used to verify the extra cooling effect of this 3D hybrid material compared to graphite film. A demonstrator using high power chip is developed to demonstrate the applicability of this hybrid material in thermal application. Temperature at hot spots can be decreased by around 10°C with the assistance of this hybrid material. These findings are very significant for understanding the thermal conduction during combining 1D and 2D carbon material together for future thermal management application.
  •  
7.
  •  
8.
  • Nylander, Andreas, 1988, et al. (författare)
  • Reliability investigation of a carbon nanotube array thermal interface material
  • 2019
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • As feature density increases within microelectronics, so does the dissipated power density, which puts an increased demand on thermal management. Thermal interface materials (TIMs) are used at the interface between contacting surfaces to reduce the thermal resistance, and is a critical component within many electronics systems. Arrays of carbon nanotubes (CNTs) have gained significant interest for application as TIMs, due to the high thermal conductivity, no internal thermal contact resistances and an excellent conformability. While studies show excellent thermal performance, there has to date been no investigation into the reliability of CNT array TIMs. In this study, CNT array TIMs bonded with polymer to close a Si-Cu interface were subjected to thermal cycling. Thermal interface resistance measurements showed a large degradation of the thermal performance of the interface within the first 100 cycles. More detailed thermal investigation of the interface components showed that the connection between CNTs and catalyst substrate degrades during thermal cycling even in the absence of thermal expansion mismatch, and the nature of this degradation was further analyzed using X-ray photoelectron spectroscopy. This study indicates that the reliability will be an important consideration for further development and commercialization of CNT array TIMs.
  •  
9.
  • Wang, Nan, 1988, et al. (författare)
  • Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering
  • 2018
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 14:29
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to substantial phonon scattering induced by various structural defects, the in-plane thermal conductivity (K) of graphene films (GFs) is still inferior to the commercial pyrolytic graphite sheet (PGS). Here, the problem is solved by engineering the structures of GFs in the aspects of grain size, film alignment, and thickness, and interlayer binding energy. The maximum K of GFs reaches to 3200 W m−1K−1and outperforms PGS by 60%. The superior K of GFs is strongly related to its large and intact grains, which are over four times larger than the best PGS. The large smooth features about 11 µm and good layer alignment of GFs also benefit on reducing phonon scattering induced by wrinkles/defects. In addition, the presence of substantial turbostratic-stacking graphene is found up to 37% in thin GFs. The lacking of order in turbostratic-stacking graphene leads to very weak interlayer binding energy, which can significantly decrease the phonon interfacial scattering. The GFs also demonstrate excellent flexibility and high tensile strength, which is about three times higher than PGS. Therefore, GFs with optimized structures and properties show great potentials in thermal management of form-factor-driven electronics and other high-power-driven systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy