SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kadian Dodov D) "

Sökning: WFRF:(Kadian Dodov D)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ma, LJ, et al. (författare)
  • The HDAC9-associated risk locus promotes coronary artery disease by governing TWIST1
  • 2022
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 18:6, s. e1010261-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The ‘gold standard’ method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encodingHDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation ofTWIST1expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.
  •  
2.
  • Olin, JW, et al. (författare)
  • A plasma proteogenomic signature for fibromuscular dysplasia
  • 2020
  • Ingår i: Cardiovascular research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 116:1, s. 63-77
  • Tidskriftsartikel (refereegranskat)abstract
    • AimsFibromuscular dysplasia (FMD) is a poorly understood disease that predominantly affects women during middle-life, with features that include stenosis, aneurysm, and dissection of medium-large arteries. Recently, plasma proteomics has emerged as an important means to understand cardiovascular diseases. Our objectives were: (i) to characterize plasma proteins and determine if any exhibit differential abundance in FMD subjects vs. matched healthy controls and (ii) to leverage these protein data to conduct systems analyses to provide biologic insights on FMD, and explore if this could be developed into a blood-based FMD test.Methods and resultsFemales with ‘multifocal’ FMD and matched healthy controls underwent clinical phenotyping, dermal biopsy, and blood draw. Using dual-capture proximity extension assay and nuclear magnetic resonance-spectroscopy, we evaluated plasma levels of 981 proteins and 31 lipid sub-classes, respectively. In a discovery cohort (Ncases = 90, Ncontrols = 100), we identified 105 proteins and 16 lipid sub-classes (predominantly triglycerides and fatty acids) with differential plasma abundance in FMD cases vs. controls. In an independent cohort (Ncases = 23, Ncontrols = 28), we successfully validated 37 plasma proteins and 10 lipid sub-classes with differential abundance. Among these, 5/37 proteins exhibited genetic control and Bayesian analyses identified 3 of these as potential upstream drivers of FMD. In a 3rd cohort (Ncases = 506, Ncontrols = 876) the genetic locus of one of these upstream disease drivers, CD2-associated protein (CD2AP), was independently validated as being associated with risk of having FMD (odds ratios  = 1.36; P = 0.0003). Immune-fluorescence staining identified that CD2AP is expressed by the endothelium of medium-large arteries. Finally, machine learning trained on the discovery cohort was used to develop a test for FMD. When independently applied to the validation cohort, the test showed a c-statistic of 0.73 and sensitivity of 78.3%.ConclusionFMD exhibits a plasma proteogenomic and lipid signature that includes potential causative disease drivers, and which holds promise for developing a blood-based test for this disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy