SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kahru Mati) "

Sökning: WFRF:(Kahru Mati)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cloern, James E., et al. (författare)
  • Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems
  • 2016
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22:2, s. 513-529
  • Forskningsöversikt (refereegranskat)abstract
    • Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.
  •  
2.
  • Kahru, Mati, et al. (författare)
  • Baltic Sea transparency from ships and satellites : centennial trends
  • 2022
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 697, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Water transparency can be measured with optical instruments and estimated with satellite sensors, but such measurements have been widely available for only a few decades. Estimates of water transparency using a white disk called a Secchi disk have been made for over a century and can be used to estimate long-term trends. However, historic in situ measurements of the Secchi depth (ZSd) were irregular in space and time and are difficult to interpret in regular time series due to biases introduced by changing locations and the timing of measurements. Satellite data time series, on the other hand, have consistent resolution in both space and time but cover too short a time to resolve climate-scale trends. We normalized historic ZSd measurements in the Baltic Sea with a satellite-derived mean climatology at 5 d temporal and 4 km spatial resolutions and created a merged time series of ZSd for the last century. The mean ZSd in the Baltic Sea from 1927-2020 decreased by 4.2 ± 0.6 m at a rate of 0.045 ± 0.06 m yr-1. Most of the change happened before 1987, and a further decrease was evident primarily in the satellite data during the 1998-2008 period. After 2008, no significant trend in ZSd and or the coefficient of diffuse light attenuation was detected in the Baltic Sea. However, in some sub-basins of the Baltic Sea, the decrease in ZSd continued even after that. The decrease in spectral water transparency in recent decades was highest in the 412 nm band, indicating an increase in the concentration of chromophoric dissolved organic matter.
  •  
3.
  • Kahru, Mati, et al. (författare)
  • Changing seasonality of the Baltic Sea
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:4, s. 1009-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the phenology of physical and ecological variables associated with climate change are likely to have significant effect on many aspects of the Baltic ecosystem. We apply a set of phenological indicators to multiple environmental variables measured by satellite sensors for 17-36 years to detect possible changes in the seasonality in the Baltic Sea environment. We detect significant temporal changes, such as earlier start of the summer season and prolongation of the productive season, in several variables ranging from basic physical drivers to ecological status indicators. While increasing trends in the absolute values of variables like sea-surface temperature (SST), diffuse attenuation of light (Ked490) and satellite-detected chlorophyll concentration (CHL) are detectable, the corresponding changes in their seasonal cycles are more dramatic. For example, the cumulative sum of 30 000 W m(-2) of surface incoming short-wave irradiance (SIS) was reached 23 days earlier in 2014 compared to the beginning of the time series in 1983. The period of the year with SST of at least 17 degrees C has almost doubled (from 29 days in 1982 to 56 days in 2014), and the period with Ked490 over 0.4 m(1) has increased from about 60 days in 1998 to 240 days in 2013 -i.e., quadrupled. The period with satellite-estimated CHL of at least 3 mg m(-3) has doubled from approximately 110 days in 1998 to 220 days in 2013. While the timing of both the phytoplankton spring and summer blooms have advanced, the annual CHL maximum that in the 1980s corresponded to the spring diatom bloom in May has now shifted to the summer cyanobacteria bloom in July.
  •  
4.
  • Kahru, Mati, et al. (författare)
  • Cyanobacterial blooms in the Baltic Sea : Correlations with environmental factors
  • 2020
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883 .- 1878-1470. ; 92
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive cyanobacteria blooms occur almost every summer in the Baltic Sea but the capability to quantitatively predict their extent and intensity is poorly developed. Here we analyse statistical relationships between multi-decadal satellite-derived time series of the frequency of cyanobacteria surface accumulations (FCA) in the central Baltic Sea Proper and a suite of environmental variables. Over the decadal scale (similar to 5-20 years) FCA was highly correlated (R-2 similar to 0.69) with a set of biogeochemical variables related to the amount of phosphorus and hypoxia in bottom layers. Water temperature in the surface layer was also positively correlated with FCA at the decadal scale. In contrast, the inter-annual variations in FCA had no correlation with the biogeochemical variables. Instead, significant correlations were found with the solar shortwave direct flux in July and the sea-surface temperature, also in July. It thus appears that it is not possible to predict inter-annual fluctuations in cyanobacteria blooms from water chemistry. Moreover, environmental variables could only explain about 45% of the inter-annual variability in FCA, probably because year-to-year variations in FCA are significantly influenced by biological interactions.
  •  
5.
  • Kahru, Mati, et al. (författare)
  • Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11:13, s. 3619-3633
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria, primarily of the species Nodularia spumigena, form extensive surface accumulations in the Baltic Sea in July and August, ranging from diffuse flakes to dense surface scums. The area of these accumulations can reach similar to 200 000 km(2). We describe the compilation of a 35-year-long time series (1979-2013) of cyanobacteria surface accumulations in the Baltic Sea using multiple satellite sensors. This appears to be one of the longest satellite-based time series in biological oceanography. The satellite algorithm is based on remote sensing reflectance of the water in the red band, a measure of turbidity. Validation of the satellite algorithm using horizontal transects from a ship of opportunity showed the strongest relationship with phycocyanin fluorescence (an indicator of cyanobacteria), followed by turbidity and then by chlorophyll a fluorescence. The areal fraction with cyanobacteria accumulations (FCA) and the total accumulated area affected (TA) were used to characterize the intensity and extent of the accumulations. The fraction with cyanobacteria accumulations was calculated as the ratio of the number of detected accumulations to the number of cloud-free sea-surface views per pixel during the season (July-August). The total accumulated area affected was calculated by adding the area of pixels where accumulations were detected at least once during the season. The fraction with cyanobacteria accumulations and TA were correlated (R-2 = 0.55) and both showed large interannual and decadal-scale variations. The average FCA was significantly higher for the second half of the time series (13.8 %, 1997-2013) than for the first half (8.6 %, 1979-1996). However, that does not seem to represent a long-term trend but decadal-scale oscillations. Cyanobacteria accumulations were common in the 1970s and early 1980s (FCA between 11-17 %), but rare (FCA below 4 %) during 1985-1990; they increased again starting in 1991 and particularly in 1999, reaching maxima in FCA (similar to 25 %) and TA (similar to 210 000 km(2)) in 2005 and 2008. After 2008, FCA declined to more moderate levels (6-17 %). The timing of the accumulations has become earlier in the season, at a mean rate of 0.6 days per year, resulting in approximately 20 days advancement during the study period. The interannual variations in FCA are positively correlated with the concentration of chlorophyll a during July-August sampled at the depth of similar to 5 m by a ship of opportunity, but interannual variations in FCA are more pronounced as the coefficient of variation is over 5 times higher.
  •  
6.
  • Kahru, Mati, et al. (författare)
  • Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Population oscillations in multi-species or even single species systems are well-known but have rarely been detected at the lower trophic levels in marine systems. Nitrogen fixing cyanobacteria are a major component of the Baltic Sea ecosystem and sometimes form huge surface accumulations covering most of the sea surface. By analysing a satellite-derived 39-year (1979–2017) data archive of surface cyanobacteria concentrations we have found evidence of strikingly regular interannual oscillations in cyanobacteria concentrations in the northern Baltic Sea. These oscillations have a period of ~3 years with a high-concentration year generally followed by one or two low-concentration years. Changes in abiotic factors known to influence the growth and survival of cyanobacteria could not provide an explanation for the oscillations. We therefore assume that these oscillations are intrinsic to the marine system, caused by an unknown, probably mainly biological mechanism that may be triggered by a combination of environmental factors. Interactions between different life cycle stages of cyanobacteria as well as between predator-prey or host-parasite are possible candidates for causing the oscillations.
  •  
7.
  • Sathyendranath, Shubha, et al. (författare)
  • An Ocean-Colour Time Series for Use in Climate Studies : The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI)
  • 2019
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 19:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.
  •  
8.
  • Valente, Andre, et al. (författare)
  • A compilation of global bio-optical in situ data for ocean-colour satellite applications
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:1, s. 235-252
  • Tidskriftsartikel (refereegranskat)abstract
    • A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi: 10.1594/PANGAEA.854832 (Valente et al., 2015).
  •  
9.
  • Valente, André, et al. (författare)
  • A compilation of global bio-optical in situ data for ocean-colour satellite applications - version two
  • 2019
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 11:3, s. 1037-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • A global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT and GeP&CO) and span the period from 1997 to 2018. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenization, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) was propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version (Valente et al., 2016). The compiled data are available at https://doi.org/10.1594/PANGAEA.898188 (Valente et al., 2019).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy