SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kainulainen S.) "

Sökning: WFRF:(Kainulainen S.)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schuller, F., et al. (författare)
  • The SEDIGISM survey: First Data Release and overview of the Galactic structure
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3064-3082
  • Tidskriftsartikel (refereegranskat)abstract
    • The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic InterstellarMedium) survey used the APEX telescope to map 84 deg(2) of the Galactic plane between l = -60 degrees and +31 degrees in several molecular transitions, including (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1), thus probing the moderately dense (similar to 10(3) cm(-3)) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1 sigma sensitivity of 0.8-1.0K at 0.25 km s(-1) velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
  •  
2.
  • Zuntini, Alexandre R., et al. (författare)
  • Phylogenomics and the rise of the angiosperms
  • 2024
  • Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 629, s. 843-850
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods(1,2). A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome(3,4). Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins(5-7). However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes(8). This 15-fold increase in genus-level sampling relative to comparable nuclear studies(9) provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
  •  
3.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
4.
  • Wang, Y., et al. (författare)
  • Cloud formation in the atomic and molecular phase: H I self absorption (HISA) towards a giant molecular filament
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a complex observational task. Here we address cloud formation processes by combining HI self absorption (HISA) with molecular line data. Column density probability density functions (N-PDFs) are a common tool for examining molecular clouds. One scenario proposed by numerical simulations is that the N-PDF evolves from a log-normal shape at early times to a power-law-like shape at later times. To date, investigations of N-PDFs have been mostly limited to the molecular component of the cloud. In this paper, we study the cold atomic component of the giant molecular filament GMF38.1-32.4a (GMF38a, distance = 3.4 kpc, length similar to 230 pc), calculate its N-PDFs, and study its kinematics. We identify an extended HISA feature, which is partly correlated with the (CO)-C-13 emission. The peak velocities of the HISA and (CO)-C-13 observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4 km s(-1) is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM part is on the order of 10(20) to 10(21) cm(-2). The column density of molecular hydrogen, traced by (CO)-C-13, is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (the warm and cold neutral medium), and (CO)-C-13 (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation, and evidence of related feedback processes.
  •  
5.
  • Beuther, H., et al. (författare)
  • OH maser emission in the THOR survey of the northern Milky Way
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Providing a survey of the ground-state OH maser transitions in the northern hemisphere inner Milky Way facilitates the study of a broad range of scientific topics. Aims. We want to identify the ground-state OH masers at similar to 18 cm wavelength in the area covered by The HI/OH/Recombination line survey of the Milky Way (THOR). We will present a catalogue of all OH maser features and their possible associated environments. Methods. The THOR survey covers longitude and latitude ranges of 14 degrees.3 < l < 66 degrees.8 and b < +/- 1 degrees.25. All OH ground state lines (2)Pi(3/2) (J = 3/2) at 1612 (F = 1-2), 1665 (F = 1-1), 1667 (F = 2-2) and 1720 MHz (F = 2-1) have been observed, employing the Very Large Array (VLA) in its C configuration. The spatial resolution of the data varies between 12.5 '' and 19 '', the spectral resolution is 1.5 km s(-1), and the rms sensitivity of the data is similar to 10 mJy beam(-1) per channel. Results. We identify 1585 individual maser spots (corresponding to single spectral features) distributed over 807 maser sites (regions of size similar to 10(3)-10(4) AU). Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612 MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38 km s(-1). In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720 MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720 MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal (CO)-C-13(1-0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form. Conclusions. This OH maser catalogue presents a unique resource of stellar and interstellar masers in the northern hemisphere. It provides the basis for a diverse range of follow-up studies from envelopes around evolved stars to star-forming regions and Supernova remnants.
  •  
6.
  • Soler, J. D., et al. (författare)
  • Histogram of oriented gradients: a technique for the study of molecular cloud formation
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the histogram of oriented gradients (HOG), a tool developed for machine vision that we propose as a new metric for the systematic characterization of spectral line observations of atomic and molecular gas and the study of molecular cloud formation models. In essence, the HOG technique takes as input extended spectral-line observations from two tracers and provides an estimate of their spatial correlation across velocity channels. We characterized HOG using synthetic observations of HI and (CO)-C-13(J = 1 -> 0) emission from numerical simulations of magnetohydrodynamic (MHD) turbulence leading to the formation of molecular gas after the collision of two atomic clouds. We found a significant spatial correlation between the two tracers in velocity channels where v(HI) approximate to v(13CO), almost independent of the orientation of the collision with respect to the line of sight. Subsequently, we used HOG to investigate the spatial correlation of the HI, from The HI/OH/recombination line survey of the inner Milky Way (THOR), and the (CO)-C-13(J = 1 -> 0) emission from the Galactic Ring Survey (GRS), toward the portion of the Galactic plane 33.degrees 75 <= l <= 35.degrees 25 and vertical bar b vertical bar <= 1.degrees 25. We found a significant spatial correlation between the two tracers in extended portions of the studied region. Although some of the regions with high spatial correlation are associated with HI self-absorption (HISA) features, suggesting that it is produced by the cold atomic gas, the correlation is not exclusive to this kind of region. The HOG results derived for the observational data indicate significant differences between individual regions: some show spatial correlation in channels around v(HI) approximate to v(13CO) while others present spatial correlations in velocity channels separated by a few kilometers per second. We associate these velocity offsets to the effect of feedback and to the presence of physical conditions that are not included in the atomic-cloud-collision simulations, such as more general magnetic field configurations, shear, and global gas infall.
  •  
7.
  • Urquhart, J. S., et al. (författare)
  • SEDIGISM-ATLASGAL: Dense gas fraction and star formation efficiency across the Galactic disc
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3050-3063
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ΣMclump/Mgmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = ΣLclump/Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 km s-1 of an arm).We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process.
  •  
8.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
9.
  • Treviño Morales, Sandra, 1985, et al. (författare)
  • Dynamics of cluster-forming hub-filament systems The case of the high-mass star-forming complex Monoceros R2
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the (CO)-C-13 and (CO)-O-18 1 -> 0 and 2 -> 1 lines obtained with the IRAM-30m telescope. We also used H-2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R-2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30-100 M-circle dot pc(-1) and show signs of fragmentation, while the secondary filaments have line masses of 12-60 M-circle dot pc(-1) and show fragmentation only sporadically. In the context of Ostriker's hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10(-4)-10(-3) M-circle dot yr(-1) into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1-0.4 x 10(-4) M-circle dot yr(-1). The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is similar to 2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring-or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.
  •  
10.
  • Mattern, M., et al. (författare)
  • SEDIGISM: the kinematics of ATLASGAL filaments
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyzing the kinematics of filamentary molecular clouds is a crucial step toward understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyze the kinematics of these targets and to determine their physical properties at a resolution of 30 '' and 0.25 km s(-1). To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of- sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p approximate to 1.5 +/- 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of m proportional to o(v)(2). We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy