SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kajita Shinya) "

Sökning: WFRF:(Kajita Shinya)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Blaschek, Leonard, et al. (författare)
  • Cellular and Genetic Regulation of Coniferaldehyde Incorporation in Lignin of Herbaceous and Woody Plants by Quantitative Wiesner Staining
  • 2020
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin accumulates in the cell walls of specialized cell types to enable plants to stand upright and conduct water and minerals, withstand abiotic stresses, and defend themselves against pathogens. These functions depend on specific lignin concentrations and subunit composition in different cell types and cell wall layers. However, the mechanisms controlling the accumulation of specific lignin subunits, such as coniferaldehyde, during the development of these different cell types are still poorly understood. We herein validated the Wiesner test (phloroglucinol/HCl) for the restrictive quantitative in situ analysis of coniferaldehyde incorporation in lignin. Using this optimized tool, we investigated the genetic control of coniferaldehyde incorporation in the different cell types of genetically-engineered herbaceous and woody plants with modified lignin content and/or composition. Our results demonstrate that the incorporation of coniferaldehyde in lignified cells is controlled by (a) autonomous biosynthetic routes for each cell type, combined with (b) distinct cell-to-cell cooperation between specific cell types, and (c) cell wall layer-specific accumulation capacity. This process tightly regulates coniferaldehyde residue accumulation in specific cell types to adapt their property and/or function to developmental and/or environmental changes.
  •  
3.
  • Blaschek, Leonard, et al. (författare)
  • Determining the Genetic Regulation and Coordination of Lignification in Stem Tissues of Arabidopsis Using Semiquantitative Raman Microspectroscopy
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 8:12, s. 4900-4909
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is a phenolic polymer accumulatig in the cell walls of specific plant cell types to confer unique properties such as hydrophobicity, mechanical strengthening, and resistance to degradation. Different cell types accumulate lignin with specific concentration and composition to support their specific roles in the different plant tissues. Yet the genetic mechanisms controlling lignin quantity and composition differently between the different lignified cell types and tissues still remain poorly understood. To investigate this tissue-specific genetic regulation, we validated both the target molecular structures as well as the linear semi-quantitative capacity of Raman microspectroscopy to characterize the total lignin amount, S/G ratio, and coniferyl alcohol content in situ directly in plant biopsies. Using the optimized method on stems of multiple lignin biosynthesis loss-of-function mutants revealed that the genetic regulation of lignin is tissue specific, with distinct genes establishing nonredundant check-points to trigger specific compensatory adjustments affecting either lignin composition and/or cell wall polymer concentrations.
  •  
4.
  •  
5.
  • Ménard, Delphine, et al. (författare)
  • Dynamic incorporation of specific lignin residues controls the biomechanics of the plant vasculature and its resilience to environmental changes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    •  The accumulation of the cell wall polymer lignin in vascular cells enables long-distance water conduction and structural support in plants. Independently of the plant species, each different vascular cell type accumulates specific lignin amount and composition affecting both aromatic and aliphatic substitutions of its residues. However, the biological role of this conserved and specific lignin chemistry for each cell type remains unclear. Herein, we performed single cell analyses on plant vascular cell morphotypes to investigate the role of specific lignin composition for cellular function. We showed that distinct amounts and compositions of lignin accumulated in the different morphotypes of the sap conducting vascular cells. We discovered that lignin accumulates dynamically, increasing in quantity and changing composition, to fine-tune the cell wall mechanical properties of each conducting cell morphotype. Modification this lignin specificity impaired specifically the cell wall mechanical properties of each morphotype and consequently their capacity to optimally conduct water in normal but also to recover from drought conditions. Altogether, our findings provide the biological role of specific lignin chemistry in sap conducting cells, to dynamically adjust the hydraulic properties of each conducting cell during developmental and environmental constraints.
  •  
6.
  • Ménard, Delphine, et al. (författare)
  • Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype
  • 2022
  • Ingår i: The Plant Cell. - : Oxford University Press. - 1040-4651 .- 1532-298X. ; 34:12, s. 4877-4896
  • Tidskriftsartikel (refereegranskat)abstract
    • The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
  •  
7.
  • Yamamoto, Masanobu, et al. (författare)
  • Importance of Lignin Coniferaldehyde Residues for Plant Properties and Sustainable Uses
  • 2020
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 13:17, s. 4400-4408
  • Tidskriftsartikel (refereegranskat)abstract
    • Increases in coniferaldehyde content, a minor lignin residue, significantly improves the sustainable use of plant biomass for feed, pulping, and biorefinery without affecting plant growth and yields. Herein, different analytical methods are compared and validated to distinguish coniferaldehyde from other lignin residues. It is shown that specific genetic pathways regulate amount, linkage, and position of coniferaldehyde within the lignin polymer for each cell type. This specific cellular regulation offers new possibilities for designing plant lignin for novel and targeted industrial uses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy