SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalwar Nazar Hussain) "

Sökning: WFRF:(Kalwar Nazar Hussain)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali Soomro, Razium, et al. (författare)
  • Glycine-assisted preparation of Co3O4 nanoflakes with enhanced performance for non-enzymatic glucose sensing
  • 2015
  • Ingår i: MATERIALS EXPRESS. - : AMER SCIENTIFIC PUBLISHERS. - 2158-5849. ; 5:5, s. 437-444
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study a simple, inexpensive and efficient route is proposed to synthesise attractive cobalt oxide (Co3O4) nanostructures using glycine as an effective growth controller and regulator. The as-synthesised Co3O4 nanostructures were observed to possess unique nanoflake shape morphological features with highly dense distribution. The formation of Co3O4 nanoflakes (Co3O4 NFKs) was elaborately explored using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Scanning electron microscopy (SEM) respectively. The unique Co3O4 nanoflakes were known to possess excellent electro-catalytic potential for the oxidation of glucose in alkaline medium. This potential property allowed successful development of highly sensitive (1180 mu A mM(-1) cm(-2)), selective and stable non-enzymatic glucose sensor. In addition, the developed sensor had a wide working range (0.1-5.0 mM), low limit of detection (0.7 mu M), and excellent reproducibility, besides the capability of analysing real blood glucose samples.
  •  
2.
  • Abbas, Malik Waseem, et al. (författare)
  • Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid
  • 2019
  • Ingår i: Microchemical journal (Print). - : ELSEVIER SCIENCE BV. - 0026-265X .- 1095-9149. ; 146, s. 517-524
  • Tidskriftsartikel (refereegranskat)abstract
    • The study explores carbon quantum dots (C-dots) as potential candidates for enhancing the signal sensitivity of an electrochemical sensor devised for biologically important molecule, such as uric acid (UA). The C-dots were evaluated for their electrochemical characteristics in combination with Fe3O4 nanoparticles (Fe3O4 NPs), which were applied as the primary electro-catalytic promoter. The hybrid nanocomposite (C-dots/Fe3O4 HCs) formation was achieved by facilitating the adsorption of C-dots over Fe3O4 NPs using amine-carbonyl interactions. Unlike, one pot method, the proposed strategy enables aggregation-free coverage of Fe3O4 NPs with highly conductive layer of C-dots that can act as conduction centres to support ultra-fast electron transfer kinetics to satisfy the need of high signal sensitivity. The hybrid composite demonstrated remarkable signal improvement when tested against the electrochemical oxidation of UA. The heighten current response and lower over-potential values enabled development of a DC-amperometric (DC-AMP) sensor for UA with a linear working range of 0.01 to 0.145 mu M and signal sensitivity measurable up to 6.0 x 10(-9) M. The said improvement was manifested as a synergetic outcome of active redox couple (Fe (III/II)), larger surface area of Fe3O4 NPs engulfed with a layer of highly conductive C-dots acting as efficient charge sensitisers.
  •  
3.
  • Abbas, Zaheer, et al. (författare)
  • In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker
  • 2020
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pgmL(-1) to 50 ng.mL(-1) with signal sensitivity achievable up to 0.15 pgmL(-1). The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.
  •  
4.
  • Soomro, Razium Ali, et al. (författare)
  • In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase
  • 2019
  • Ingår i: Biosensors & bioelectronics. - : ELSEVIER ADVANCED TECHNOLOGY. - 0956-5663 .- 1873-4235. ; 141
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the construction of highly-sensitive photo-electrochemical (PEC) immunosensor for the detection of neuron-specific enolase (NSE). The biosensing platform is comprised of photo-active NiWO4 nanostructures, in-situ-grown over a conductive substrate (indium tin oxide) using a low-temperature template-based co-precipitation approach. The discussed approach enables the formation of discrete, yet morphologically-analogous, nanostructures with complete coverage (pinhole-free) of the electrode surface. The in-situ-grown nanostructure possess dense population with sharp saw-blade like morphological features that can support substantial immobilisation of anti-NSE agent. The constructed platform demonstrated excellent photo-catalytic activity towards uric acid (UA) which served as the base for the Electrochemical -mechanism (EC) based PEC inhibition sensing. The detection of NSE, relied on its obstruction in analytical signal observed for the photo-oxidation of UA after binding to the electrode surface via protein-antibody interaction. The constructed PEC immunosensor exhibits signal sensitivity up to 0.12 ng mL(-1) of NSE with excellent signal reproducibility and electrode replicability. Moreover, the constructed platform was successfully used for NSE determination in human serum samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy