SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kamlund Sofia) "

Sökning: WFRF:(Kamlund Sofia)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • El-Schich, Zahra, et al. (författare)
  • Holography : The Usefulness of Digital Holographic Microscopy for Clinical Diagnostics
  • 2017
  • Ingår i: Holographic Materials and Optical Systems. - : INTECH. - 9789535130383 ; , s. 319-333
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Digital holographic (DH) microscopy is a digital high-resolution holographic imaging technique with the capacity of quantification of cellular conditions without any staining or labeling of cells. The unique measurable parameters are the cell number, cell area, thickness, and volume, which can be coupled to proliferation, migration, cell cycle analysis, viability, and cell death. The technique is cell friendly, fast and simple to use and has unique imaging capabilities for time-lapse investigations on both the single cell and the cell-population levels. The interest for analyzing specifically cell volume changes with DH microscopy, resulting from cytotoxic treatments, drug response, or apoptosis events has recently increased in popularity. We and others have used DH microscopy showing that the technique has the sensitivity to distinguish between different cells and treatments. Recently, DH microscopy has been used for cellular diagnosis in the clinic, providing support for using the concept of DH, e.g., screening of malaria infection of red blood cells (RBC), cervix cancer screening, and sperm quality. Because of its quick and label-free sample handling, DH microscopy will be an important tool in the future for personalized medicine investigations, determining the optimal therapeutic concentration for both different cancer types and individual treatments.
  •  
2.
  • Kamlund, Sofia, et al. (författare)
  • Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy
  • 2017
  • Ingår i: Cell Cycle. - : Informa UK Limited. - 1538-4101 .- 1551-4005. ; 16:21, s. 2128-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies on new cancer drugs are based on population-derived data, where the absence of response of a small population may pass unnoticed. Thus, individual longitudinal tracking of cells is important for the future development of efficient cancer treatments. We have used digital holographic microscopy to track individual JIMT-1 human breast cancer cells and L929 mouse fibroblast cultivated in normoxia or hypoxia. In addition, JIMT-1 cells were treated with salinomycin, a cancer stem cell targeting compound. Three-day time-lapse movies were captured and individual cells were analysed with respect to cell division (cell cycle length) and cell movement. Comparing population-doubling time derived from population-based growth curves and individual cell cycle time data from time-lapse movies show that the former hide a sub-population of dividing cells. Salinomycin treatment increased the motility of cells, however, this motility did not result in an increased distant migration i.e. the cells increased their local movement. MCF-7 breast cancer cells showed similar motility behaviour as salinomycin-treated JIMT-1 cells. We suggest that combining features, such as motility and migration, can be used to distinguish cancer cells with mesenchymal (JIMT-1) and epithelial (MCF-7) features. The data clearly emphasize the importance of longitudinal cell tracking to understand the biology of individual cells under different conditions.
  •  
3.
  • Kamlund, Sofia (författare)
  • Not all those who wander are lost : A study of cancer cells by digital holographic imaging, fluorescence and a combination thereof
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cells are commonly used in research to evaluate toxicity and efficiency of drugs. However, to further increase the usefulness of cells as well as the understandings of effects of different interventions, new methods must constantly be developed and refined. Today, many assays use end-point analysis of large populations of cells, to evaluate the research question. However, there are many cases when this kind of analysis hides important effects or behaviour of individual cells. Therefore, quantitative analysis of individual cells over long time periods is important for the complete understanding of the heterogeneity of cell populations. Dogital holographic imaging is a non-toxic quantitative method that can be used for analysis of individual cells over long periods of time. It is the major analysis method of this thesis. In cancer, a small population of cells has gained the interest of cancer researchers since the cells resist treatment and have increased capability to migrate and form metastases. Those cells are called cancer stem cells, due to their many similarities to normal stem cells. The interest in drugs that specifically target cancer stem cells has dramatically increased during the last decade. One of the drugs found to target cancer stem cells in multiple cancers is salinomycin, an ionophore which has been used as an antibiotic for more than 30 years. Almost immediately after addition to the medium of cells, salinomycin is found in the endoplasmatic reticulum resulting in increases the cytosolic Ca2+. This leads to further down-stream effects, which among others includes mesenchymal to epithelial transition. We have used longitudinal tracking of cells in time-lapses acquired using digital holographic imaging to evaluate cell cycle times and movement of different cancer cell lines as well as normal cell lines. We found that small sub-populations of cells behaved differently than the rest of the individually tracked cells. The existence of these cells could not be distinguished in the population-based data we compared the result to. Further, we also analysed how treatment with salinomycin affected cell cycle time and cell movement. To further develop our longitudinal assay, we combined digital holographic microscopy with fluorescence microscopy by acquiring images from two systems at the same field of view. We then combined the data from the longitudinal tracking with the expression of cell surface proteins specific for cancer stem cells. We found that salinomycin treatment decreased cell proliferation in cancer stem cells already within 24 hours of treatment, leading to a proportional decrease in this sub-population of the cells.
  •  
4.
  • Kamlund, Sofia, et al. (författare)
  • Quantifying the rate, degree, and heterogeneity of morphological change during an epithelial to mesenchymal transition using digital holographic cytometry
  • 2020
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells in complex organisms can transition between epithelial and mesenchymal phenotypes during both normal and malignant physiological events. These two phenotypes are not binary, but rather describe a spectrum of cell states along an axis. Mammalian cells can undergo dynamic and heterogenous bidirectional interconversions along the epithelial-mesenchymal phenotypic (EMP) spectrum, and such transitions are marked by morphological change. Here, we exploit digital holographic cytometry (DHC) to develop a tractable method for monitoring the degree, kinetics, and heterogeneity of epithelial and mesenchymal phenotypes in adherent mammalian cell populations. First, we demonstrate that the epithelial and mesenchymal states of the same cell line present distinct DHC-derived morphological features. Second, we identify quantitative changes in these features that occur hours after induction of the epithelial to mesenchymal transition (EMT). We apply this approach to achieve label-free tracking of the degree and the rate of EMP transitions. We conclude that DHC is an efficient method to investigate morphological changes during transitions between epithelial and mesenchymal states.
  •  
5.
  • Kamlund, Sofia, et al. (författare)
  • Salinomycin treatment specifically inhibits cell proliferation of cancer stem cells revealed by longitudinal single cell tracking in combination with fluorescence microscopy
  • 2020
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • A cell line derived from a tumor is a heterogeneous mixture of phenotypically different cells. Such cancer cell lines are used extensively in the search for new anticancer drugs and for investigating their mechanisms of action. Most studies today are population-based, implying that small subpopulations of cells, reacting differently to the potential drug go undetected. This is a problem specifically related to the most aggressive single cancer cells in a tumor as they appear to be insensitive to the drugs used today. These cells are not detected in population-based studies when developing new anticancer drugs. Thus, to get a deeper understanding of how all individual cancer cells react to chemotherapeutic drugs, longitudinal tracking of individual cells is needed. Here we have used digital holography for long time imaging and longitudinal tracking of individual JIMT-1 breast cancer cells. To gain further knowledge about the tracked cells, we combined digital holography with fluorescence microscopy. We grouped the JIMT-1 cells into different subpopulations based on expression of CD24 and E-cadherin and analyzed cell proliferation and cell migration for 72 h. We investigated how the cancer stem cell (CSC) targeting drug salinomycin affected the different subpopulations. By uniquely combining digital holography with fluorescence microscopy we show that salinomycin specifically targeted the CD24- subpopulation, i.e., the CSCs, by inhibiting cell proliferation, which was evident already after 24 h of drug treatment. We further found that after salinomycin treatment, the surviving cells were more epithelial-like due to the selection of the CD24+ cells.
  •  
6.
  • Li, Zhen, et al. (författare)
  • Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates
  • 2018
  • Ingår i: Journal of Materials Chemistry B. - : Royal Society of Chemistry (RSC). - 2050-7518 .- 2050-750X. ; 6:43, s. 7042-7049
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowires are presently investigated in the context of various biological and medical applications. In general, these studies are population-based, which results in sub-populations being overlooked. Here, we present a single cell analysis of cell cycle and cell movement parameters of cells seeded on nanowires using digital holographic microscopy for time-lapse imaging. MCF10A normal-like human breast epithelial cells and JIMT-1 breast cancer cells were seeded on glass, flat gallium phosphide (GaP), and on vertical GaP nanowire arrays. The cells were monitored individually using digital holographic microscopy for 48 h. The data show that cell division is affected in cells seeded on flat GaP and nanowires compared to glass, with much fewer cells dividing on the former two substrates compared to the latter. However, MCF10 cells that are dividing on glass and flat GaP substrates have similar cell cycle time, suggesting that distinct cell subpopulations are affected differently by the substrates. Altogether, the data highlight the importance of performing single cell analysis to increase our understanding of the versatility of cell behavior on different substrates, which is relevant in the design of nanowire applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy