SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kangur Kuelli) "

Sökning: WFRF:(Kangur Kuelli)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nava, Veronica, et al. (författare)
  • Plastic debris in lakes and reservoirs
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 619:7969, s. 317-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic debris is thought to be widespread in freshwater ecosystems globally(1). However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging(2,3). Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 mu m) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris(4). Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.
  •  
2.
  • Weyhenmeyer, Gesa A., et al. (författare)
  • Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T-w-T-a) as a proxy for sensible heat flux (Q(H)). If Q(H) is directed upward, corresponding to positive T-w-T-a, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T-w-T-a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q(H)), with T-w-T-a becoming increasingly negative with increasing T-a. Further examination of T-w-T-a using high-frequency temperature data from inland waters across the globe confirmed that T-w-T-a is linearly related to T-a. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T-w-T-a with increasing annual mean T-a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T-w-T-a, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.
  •  
3.
  • Weyhenmeyer, Gesa A., Professor, et al. (författare)
  • Global Lake Health in the Anthropocene : Societal Implications and Treatment Strategies
  • 2024
  • Ingår i: Earth's Future. - : American Geophysical Union (AGU). - 2328-4277. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • The world's 1.4 million lakes (>= 10 ha) provide many ecosystem services that are essential for human well-being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health-based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well-being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that similar to 115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well-being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow-up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non-native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro-, bio-, and atmosphere. Lakes around the world come in an array of sizes, shapes and colors, each telling a unique story of geological history and environmental importance. When lakes are healthy they contribute to the achievement of the global sustainable development goals by providing many important ecosystem services. Lakes are, however, not always healthy. Here, it is shown that lakes can suffer from a large variety of health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Without improved treatment strategies, many of the health issues may become chronic, affecting millions of people who are dependent on the ecosystem services from the lakes. To prevent and cure lakes from critical health conditions, strategies that are similar to those used in human healthcare should be applied: intervention and preventative actions before health problems occur, regular screening and early identification of lake health issues, and remediation and mitigation efforts at an appropriate scale, spanning from local to global. Anthropogenic stressors can cause lake health issues that range from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning Lake health varies geographically, with the highest risk of critical conditions occurring in densely populated low-income countries There is an urgent need to follow-up the progress of treatments and to make adjustments whenever needed
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy