SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapa Suraj) "

Sökning: WFRF:(Kapa Suraj)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attia, Zachi I., et al. (författare)
  • Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
  • 2021
  • Ingår i: Mayo Clinic proceedings. - : ELSEVIER SCIENCE INC. - 0025-6196 .- 1942-5546. ; 96:8, s. 2081-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). Methods: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. Results: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. Conclusion: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control. (C) 2021 Mayo Foundation Medical Education and Research
  •  
2.
  • Datta-Chaudhuri, Timir, et al. (författare)
  • The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms" : current progress, challenges, and charting the future
  • 2021
  • Ingår i: Bioelectronic medicine. - : BioMed Central. - 2332-8886. ; 7:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here.
  •  
3.
  • De Groot, Natasja M.S., et al. (författare)
  • Critical appraisal of technologies to assess electrical activity during atrial fibrillation : a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology
  • 2022
  • Ingår i: Europace. - : Oxford University Press (OUP). - 1099-5129. ; 24:2, s. 313-330
  • Forskningsöversikt (refereegranskat)abstract
    • We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
  •  
4.
  • Pedrotty, Dawn M., et al. (författare)
  • Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium
  • 2019
  • Ingår i: Circulation: Arrhythmia and Electrophysiology. - 1941-3149 .- 1941-3084. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Reentrant ventricular arrhythmias are a major cause of sudden death in patients with structural heart disease. Current treatments focus on electrically homogenizing regions of scar contributing to ventricular arrhythmia with ablation or altering conductive properties using antiarrhythmic drugs. The high conductivity of carbon nanotubes may allow restoration of conduction in regions where impaired electrical conduction results in functional abnormalities. We propose a new concept for arrhythmia treatment using a stretchable, flexible biopatch with conductive properties to attempt to restore conduction across regions in which activation is disrupted. METHODS: Carbon nanotube patches composed of nanofibrillated cellulose/single-walled carbon nanotube ink 3-dimensionally printed in conductive patterns onto bacterial nanocellulose were developed and evaluated for conductivity, flexibility, and mechanical properties. The patches were applied on 6 canines to epicardium before and after surgical disruption. Electroanatomic mapping was performed on normal epicardium, then repeated over surgically disrupted epicardium, and then finally with the patch applied passively. RESULTS: We developed a 3-dimensional printable carbon nanotube ink complexed on bacterial nanocellulose that was (1) expressable through 3-dimensional printer nozzles, (2) electrically conductive, (3) flexible, and (4) stretchable. Six canines underwent thoracotomy, and, during epicardial ventricular pacing, mapping was performed. We demonstrated disruption of conduction after surgical incision in all 6 canines based on activation mapping. The patch resulted in restored conduction based on mapping and assessment of conduction direction and velocities in all canines. CONCLUSIONS: We have demonstrated 3-dimensional custom-printed electrically conductive carbon nanotube patches can be surgically manipulated to improve cardiac conduction when passively applied to surgically disrupted epicardial myocardium in canines.
  •  
5.
  • van Zyl, Martin, et al. (författare)
  • Injectable conductive hydrogel restores conduction through ablated myocardium
  • 2020
  • Ingår i: Journal of Cardiovascular Electrophysiology. - : Wiley. - 1045-3873 .- 1540-8167. ; 31:12, s. 3293-3301
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Therapies for substrate-related arrhythmias include ablation or drugs targeted at altering conductive properties or disruption of slow zones in heterogeneous myocardium. Conductive compounds such as carbon nanotubes may provide a novel personalizable therapy for arrhythmia treatment by allowing tissue homogenization. Methods A nanocellulose carbon nanotube-conductive hydrogel was developed to have conduction properties similar to normal myocardium. Ex vivo perfused canine hearts were studied. Electroanatomic activation mapping of the epicardial surface was performed at baseline, after radiofrequency ablation, and after uniform needle injections of the conductive hydrogel through the injured tissue. Gross histology was used to assess distribution of conductive hydrogel in the tissue. Results The conductive hydrogel viscosity was optimized to decrease with increasing shear rate to allow expression through a syringe. The direct current conductivity under aqueous conduction was 4.3 x 10(-1) S/cm. In four canine hearts, when compared with the homogeneous baseline conduction, isochronal maps demonstrated sequential myocardial activation with a shift in direction of activation to surround the edges of the ablated region. After injection of the conductive hydrogel, isochrones demonstrated conduction through the ablated tissue with activation restored through the ablated tissue. Gross specimen examination demonstrated retention of the hydrogel within the tissue. Conclusions This proof-of-concept study demonstrates that conductive hydrogel can be injected into acutely disrupted myocardium to restore conduction. Future experiments should focus on evaluating long-term retention and biocompatibility of the hydrogel through in vivo experimentation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Kapa, Suraj (5)
Gatenholm, Paul, 195 ... (2)
Platonov, Pyotr G (2)
Kuzmenko, Volodymyr, ... (2)
Karabulut, Erdem, 19 ... (2)
Glowacki, Eric (1)
visa fler...
Berggren, Magnus, Pr ... (1)
Stevens, Molly M. (1)
Svennberg, Emma (1)
Vernooy, Kevin (1)
Aranow, Cynthia (1)
Merlo, Marco (1)
Sinagra, Gianfranco (1)
Luescher, Thomas F. (1)
Sämfors, Sanna, 1987 (1)
Sridhar, Arun R. (1)
Boyle, Patrick M. (1)
Attia, Zachi I. (1)
Dugan, Jennifer (1)
Pereira, Naveen (1)
Noseworthy, Peter A. (1)
Jimenez, Francisco L ... (1)
Cruz, Jessica (1)
Carter, Rickey E. (1)
DeSimone, Daniel C. (1)
Signorino, John (1)
Halamka, John (1)
Gari, Nikhita R. Che ... (1)
Madathala, Raja Sekh ... (1)
Gul, Fahad (1)
Janssens, Stefan P. (1)
Narayan, Sanjiv (1)
Upadhyay, Gaurav A. (1)
Alenghat, Francis J. (1)
Lahiri, Marc K. (1)
Dujardin, Karl (1)
Hermel, Melody (1)
Dominic, Paari (1)
Turk-Adawi, Karam (1)
Asaad, Nidal (1)
Svensson, Anneli (1)
Fernandez-Aviles, Fr ... (1)
Esakof, Darryl D. (1)
Bartunek, Jozef (1)
Noheria, Amit (1)
Lanza, Gaetano A. (1)
Cohoon, Kevin (1)
Padmanabhan, Deepak (1)
Gutierrez, Jose Albe ... (1)
Zagari, Domenico (1)
visa färre...
Lärosäte
Linköpings universitet (2)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Karolinska Institutet (2)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy