SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaper Delaney) "

Sökning: WFRF:(Kaper Delaney)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Devkota, Ranjan, et al. (författare)
  • A genetic titration of membrane composition in Caenorhabditis elegans reveals its importance for multiple cellular and physiological traits
  • 2021
  • Ingår i: Genetics. - 0016-6731 .- 1943-2631. ; 219:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition and biophysical properties of cellular membranes must be tightly regulated to maintain the proper functions of myriad processes within cells. To better understand the importance of membrane homeostasis, we assembled a panel of five Caenorhabditis elegans strains that show a wide span of membrane composition and properties, ranging from excessively rich in saturated fatty acids (SFAs) and rigid to excessively rich in polyunsaturated fatty acids (PUFAs) and fluid. The genotypes of the five strain are, from most rigid to most fluid: paqr-1(tm3262); paqr-2(tm3410), paqr-2(tm3410), N2 (wild-type), mdt-15(et14); nhr-49(et8), and mdt-15(et14); nhr-49(et8); acs-13(et54). We confirmed the excess SFA/rigidity-to-excess PUFA/fluidity gradient using the methods of fluorescence recovery after photobleaching (FRAP) and lipidomics analysis. The five strains were then studied for a variety of cellular and physiological traits and found to exhibit defects in: permeability, lipid peroxidation, growth at different temperatures, tolerance to SFA-rich diets, lifespan, brood size, vitellogenin trafficking, oogenesis, and autophagy during starvation. The excessively rigid strains often exhibited defects in opposite directions compared to the excessively fluid strains. We conclude that deviation from wild-type membrane homeostasis is pleiotropically deleterious for numerous cellular/physiological traits. The strains introduced here should prove useful to further study the cellular and physiological consequences of impaired membrane homeostasis.
  •  
2.
  • Petkevicius, K., et al. (författare)
  • TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis. The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease.
  •  
3.
  • Ruiz, Mario, 1984, et al. (författare)
  • AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity
  • 2023
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 299:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
  •  
4.
  • Ruiz, Mario, 1984, et al. (författare)
  • Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis.
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells and organisms require proper membrane composition to function and develop. Phospholipids are the major component of membranes and are primarily acquired through the diet. Given great variability in diet composition, cells must be able to deploy mechanisms that correct deviations from optimal membrane composition and properties. Here, using lipidomics and unbiased proteomics, we found that the embryonic lethality in mice lacking the fluidity regulators Adiponectin Receptors 1 and 2 (AdipoR1/2) is associated with aberrant high saturation of the membrane phospholipids. Using mouse embryonic fibroblasts (MEFs) derived from AdipoR1/2-KO embryos, human cell lines and the model organism C. elegans we found that, mechanistically, AdipoR1/2-derived sphingosine 1-phosphate (S1P) signals in parallel through S1PR3-SREBP1 and PPARγ to sustain the expression of the fatty acid desaturase SCD and maintain membrane properties. Thus, our work identifies an evolutionary conserved pathway by which cells and organisms achieve membrane homeostasis and adapt to a variable environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy