SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapteyn H.) "

Sökning: WFRF:(Kapteyn H.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lindenberg, A. M, et al. (författare)
  • Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition
  • 2000
  • Ingår i: Physical Review Letters. - 1079-7114. ; 84:1, s. 111-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved x-ray diffraction with picosecond temporal resolution is used to observe scattering from impulsively generated coherent acoustic phonons in laser-excited InSb crystals. The observed frequencies and damping rates are in agreement with a model based on dynamical diffraction theory coupled to analytic solutions for the laser-induced strain profile. The results are consistent with a 12 ps thermal electron-acoustic phonon coupling time together with an instantaneous component from the deformation-potential interaction. Above a critical laser fluence, we show that the first step in the transition to a disordered state is the excitation of large amplitude, coherent atomic motion.
  •  
3.
  • Lloyd-Hughes, J., et al. (författare)
  • The 2021 ultrafast spectroscopic probes of condensed matter roadmap
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 0953-8984 .- 1361-648X. ; 33:35
  • Forskningsöversikt (refereegranskat)abstract
    • In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
  •  
4.
  • Ranitovic, Predrag, et al. (författare)
  • IR-assisted ionization of helium by attosecond extreme ultraviolet radiation
  • 2010
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 12, s. 13008-
  • Tidskriftsartikel (refereegranskat)abstract
    • Attosecond science has opened up the possibility of manipulating electrons on their fundamental timescales. Here, we use both theory and experiment to investigate ionization dynamics in helium on the attosecond timescale by simultaneously irradiating the atom with a soft x-ray attosecond pulse train (APT) and an ultrafast laser pulse. Because the APT has resolution in both energy and time, we observe processes that could not be observed without resolution in both domains simultaneously. We show that resonant absorption is important in the excitation of helium and that small changes in energies of harmonics that comprise the APT can result in large changes in the ionization process. With the help of theory, ionization pathways for the infrared-assisted excitation and ionization of helium by extreme ultraviolet (XUV) attosecond pulses have been identified and simple model interpretations have been developed that should be of general applicability to more complex systems (Zewail A 2000 J. Phys. Chem. A 104 5660-94).
  •  
5.
  • Reis, D. A, et al. (författare)
  • Probing impulsive strain propagation with x-ray pulses
  • 2001
  • Ingår i: Physical Review Letters. - 1079-7114. ; 86:14, s. 3072-3075
  • Tidskriftsartikel (refereegranskat)abstract
    • Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden reflections in InSb is used to follow the propagation of a coherent acoustic pulse generated by ultrafast laser excitation. The surface and bulk components of the strain could be simultaneously measured due to the large x-ray penetration depth. Comparison of the experimental data with dynamical diffraction simulations suggests that the conventional model for impulsively generated strain underestimates the partitioning of energy into coherent modes.
  •  
6.
  •  
7.
  • Singh, K. P., et al. (författare)
  • Control of Electron Localization in Deuterium Molecular Ions using an Attosecond Pulse Train and a Many-Cycle Infrared Pulse
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:2, s. 23001-
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate an experimental control of electron localization in deuterium molecular ions created and dissociated by the combined action of an attosecond pulse train and a many-cycle infrared (IR) pulse. The attosecond pulse train is synthesized using both even and odd high order harmonics of the driving IR frequency so that it can strobe the IR field once per IR cycle. An asymmetric ejection of the deuterium ions oscillates with the full IR period when the APT-IR time-delay is scanned. The observed control is due to the creation of a coherent superposition of 1s sigma(g) and 2p sigma(u) states via interference between one-photon and two-photon dissociation channels.
  •  
8.
  • Young, Linda, et al. (författare)
  • Roadmap of ultrafast x-ray atomic and molecular physics
  • 2018
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 51:3
  • Forskningsöversikt (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ∼1 Ångstrom, and HHG provides unprecedented time resolution (∼50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ∼280 eV (44 Ångstroms) and the bond length in methane of ∼1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.
  •  
9.
  • Zusin, Dmitriy, et al. (författare)
  • Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to fifth order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain-wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy