SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kardos József) "

Sökning: WFRF:(Kardos József)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fodor, Krisztián, et al. (författare)
  • Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition.
  • 2005
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 0022-2836. ; 350:1, s. 156-69
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use.
  •  
2.
  • Hunashal, Yamanappa, et al. (författare)
  • Approaching Protein Aggregation and Structural Dynamics by Equilibrium and Nonequilibrium Paramagnetic Perturbation
  • 2022
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 94:31, s. 10949-10958
  • Tidskriftsartikel (refereegranskat)abstract
    • PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a mu s-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.
  •  
3.
  • Molnár, Tamás, et al. (författare)
  • Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor - the key to achieving extreme stability?
  • 2013
  • Ingår i: The FEBS journal. - : Wiley. - 1742-4658 .- 1742-464X. ; 280:22, s. 5750-5763
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides evidence for the extremely high resistance of a complex of crayfish trypsin (CFT) and bovine pancreatic trypsin inhibitor (BPTI) against heating and chemical denaturing agents such as sodium dodecyl sulfate (SDS) and urea. To dissociate this complex, 15min boiling in SDS was necessary, compared to a complex of bovine trypsin (BT) (EC 3.4.21.4) and BPTI, which dissociates in SDS without boiling. The CFT-BPTI complex remained stable even in 9m urea, while the BT-BPTI complex started to dissociate at concentrations of approximately 4m urea. The melting temperatures of the BT-BPTI and CFT-BPTI complexes, as determined by differential scanning calorimetry, were found to be 79.6 and 100.1°C, respectively. The behaviour of the apo-enzymes - CFT was found to have a less stable structure compared to BT - did not provide a definite indication regarding the differential effects on their stabilities. To explore the structural features responsible for this extreme stability, we crystallized CFT in complex with BPTI, and identified extended contacts compared to the BT-BPTI complex. Comparison of the B-factors of similar trypsin-trypsin inhibitor complexes suggests that molecular flexibility of the components is also required for the strong protein-protein interaction. Although the structural reason for the extreme stability of the CFT-BPTI complex is not yet fully understood, our study may be a starting point for the development of new protein complexes with enhanced stability.
  •  
4.
  • Wahlgren, Weixiao Yuan, 1970, et al. (författare)
  • The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action.
  • 2011
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 286:5, s. 3587-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the O(δ2)-C(γ) bond appears to be a double bond, with O(δ2) involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on O(δ1) atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mF(obs) - DF(calc) density above 2.5 σ next to O(δ1). As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pK(a) of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pK(a) histidine theory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy