SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karhu Jari) "

Sökning: WFRF:(Karhu Jari)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roslin, Tomas, et al. (författare)
  • A molecular-based identification resource for the arthropods of Finland
  • 2022
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 22:2, s. 803-822
  • Tidskriftsartikel (refereegranskat)abstract
    • To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society. 
  •  
2.
  • Lipponen, Katriina, et al. (författare)
  • Partial-filling affinity capillary electrophoresis and quartz crystal microbalance with adsorption energy distribution calculations in the study of biomolecular interactions with apolipoprotein E as interaction partner
  • 2014
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer. - 1618-2642 .- 1618-2650. ; 406:17, s. 4137-4146
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption energy distribution (AED) calculations were successfully applied to partial-filling affinity capillary electrophoresis (PF-ACE) to facilitate more detailed studies of biomolecular interactions. PF-ACE with AED calculations was employed to study the interactions between two isoforms of apolipoprotein E (apoE) and dermatan sulfate (DS), and a quartz crystal microbalance (QCM) was used in combination with AED calculations to examine the interactions of the 15-amino-acid peptide fragment of apoE with DS. The heterogeneity of the interactions was elucidated. Microscale thermophoresis was used to validate the results. The interactions studied are of interest because, in vivo, apolipoprotein E localizes on DS-containing regions in the extracellular matrix of human vascular subendothelium. Two-site binding was demonstrated for the isoform apoE3 and DS, but only one-site binding for apoE2–DS. Comparable affinity constants were obtained for the apoE2–DS, apoE3–D3, and 15-amino-acid peptide of apoE–DS using the three techniques. The results show that combining AED calculations with modern biosensing techniques can open up another dimension in studies on the heterogeneity and affinity constants of biological molecules.
  •  
3.
  • Niskanen, Eini, et al. (författare)
  • New insights into Alzheimer's disease progression : a combined TMS and structural MRI study
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:10, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas.METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness.CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD.
  •  
4.
  • Witos, Joanna, et al. (författare)
  • Partial filling affinity capillary electrophoresis including adsorption energy distribution calculations : towards reliable and feasible biomolecular interaction studies
  • 2015
  • Ingår i: The Analyst. - : Royal Society of Chemistry. - 0003-2654 .- 1364-5528. ; 140:9, s. 3175-3182
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a method to study and analyze the interaction data in free solution by exploiting partial filling affinity capillary electrophoresis (PF-ACE) followed by adsorption energy distribution calculations (AED) prior model fit to adsorption isotherms will be demonstrated. PF-ACE-AED approach allowed the possibility to distinguish weak and strong interactions of the binding processes between the most common apolipoprotein E protein isoforms (apoE2, apoE3, apoE4) of high density lipoprotein (HDL) and apoE-containing HDL2 with major glycosaminoglycan (GAG) chain of proteoglycans (PGs), chondroitin-6-sulfate (C6S). The AED analysis clearly revealed the heterogeneity of the binding processes. The major difference was that they were heterogeneous with two different adsorption sites for apoE2 and apoE4 isoforms, whereas interestingly for apoE3 and apoE-containing HDL2, the binding was homogeneous (one site) adsorption process. Moreover, our results allowed the evaluation of differences in the binding process strengths giving the following order with C6S: apoE-containing HDL2 > apoE2 > apoE4 > apoE3. In addition, the affinity constant values determined could be compared with those obtained in our previous studies for the interactions between apoE isoforms and another important GAG chain of PGs - dermatan sulfate (DS). The success of the combination of AED calculations prior to non-linear adsorption isotherm model fit with PF-ACE when the concentration range was extended, confirmed the power of the system in the clarification of the heterogeneity of biological processes studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy