SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karhu R) "

Sökning: WFRF:(Karhu R)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Kaasinen, E, et al. (författare)
  • Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 1252-
  • Tidskriftsartikel (refereegranskat)abstract
    • Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.
  •  
4.
  • Kainu, T, et al. (författare)
  • Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus
  • 2000
  • Ingår i: Proceedings of the National Academy of Sciences. - 1091-6490. ; 97:17, s. 9603-9608
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant proportion of familial breast cancers cannot be explained by mutations in the BRCA1 or BRCA2 genes. We applied a strategy to identify predisposition loci for breast cancer by using mathematical models to identify early somatic genetic deletions in tumor tissues followed by targeted linkage analysis. Comparative genomic hybridization was used to study 61 breast tumors from 37 breast cancer families with no identified BRCA1 or BRCA2 mutations. Branching and phylogenetic tree models predicted that loss of 13q was one of the earliest genetic events in hereditary cancers. In a Swedish family with five breast cancer cases, all analyzed tumors showed distinct 13q deletions, with the minimal region of loss at 13q21-q22. Genotyping revealed segregation of a shared 13q21 germ-line haplotype in the family. Targeted linkage analysis was carried out in a set of 77 Finnish, Icelandic, and Swedish breast cancer families with no detected BRCA1 and BRCA2 mutations. A maximum parametric two-point logarithm of odds score of 2.76 was obtained for a marker at 13q21 (D13S1308, theta = 0.10). The multipoint logarithm of odds score under heterogeneity was 3.46. The results were further evaluated by simulation to assess the probability of obtaining significant evidence in favor of linkage by chance as well as to take into account the possible influence of the BRCA2 locus, located at a recombination fraction of 0.25 from the new locus. The simulation substantiated the evidence of linkage at D13S1308 (P < 0.0017). The results warrant studies of this putative breast cancer predisposition locus in other populations.
  •  
5.
  •  
6.
  • Tirkkonen, M, et al. (författare)
  • Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations
  • 1997
  • Ingår i: Cancer Research. - 0008-5472. ; 57:7, s. 7-1222
  • Tidskriftsartikel (refereegranskat)abstract
    • BRCA1 and BRCA2 mutations confer increased risk for development of breast cancer, but a number of additional, currently largely unknown, somatic genetic defects must also accumulate in the breast epithelial cells before malignancy develops. To evaluate the nature of these additional somatic genetic defects, we performed a genome-wide survey by comparative genomic hybridization on breast cancers from 21 BRCA1 mutation carriers, 15 BRCA2 mutation carriers, and 55 unselected controls. The total number of genetic changes was almost two times higher in tumors from both BRCA1 and BRCA2 mutation carriers than in the control group. In BRCA1 tumors, losses of 5q (86%), 4q (81%), 4p (64%), 2q (40%), and 12q (40%) were significantly more common than in the control group (7-13%). BRCA2 tumors were characterized by a higher frequency of 13q (73%) and 6q (60%) losses and gains of 17q22-q24 (87%) and 20q13 (60%) as compared to the prevalence of these changes in the control group (12-18%). In conclusion, accumulation of somatic genetic changes during tumor progression may follow a unique pathway in individuals genetically predisposed to cancer, especially by the BRCA1 gene. Activation or loss of genes in the affected chromosomal regions may be selected for during tumor progression in cells lacking functional BRCA1 or BRCA2. Identification of such genes could provide targets for therapeutic intervention and early diagnosis.
  •  
7.
  •  
8.
  • Clark, R., et al. (författare)
  • Developing a robust self evaluation framework for active learning : The first stage of an ERASMUS+ project (QAEMarketPlace4HEI)
  • 2015
  • Ingår i: Proceedings of the 43rd SEFI Annual Conference 2015 - Diversity in Engineering Education: An Opportunity to Face the New Trends of Engineering, SEFI 2015. - : European Society for Engineering Education (SEFI). - 9782873520120
  • Konferensbidrag (refereegranskat)abstract
    • In ensuring the quality of learning and teaching in Higher Education, self-evaluation is an important component of the process. An example would be the approach taken within the CDIO community whereby self-evaluation against the CDIO standards is part of the quality assurance process. Eight European universities (Reykjavik University, Iceland; Turku University of Applied Sciences, Finland; Aarhus University, Denmark; Helsinki Metropolia University of Applied Sciences, Finland; Umeå University, Sweden; Telecom Bretagne, France; Aston University, United Kingdom; Queens University Belfast, United Kingdom) are engaged in an EU funded Erasmus + project that is exploring the quality assurance process associated with active learning.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy