SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karkman Antti) "

Sökning: WFRF:(Karkman Antti)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hultman, J., et al. (författare)
  • Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent
  • 2018
  • Ingår i: Fems Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 94:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacE Delta 1 and bla(OXA-58)) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.
  •  
2.
  • Karkman, Antti, et al. (författare)
  • Antibiotic-Resistance Genes in Waste Water
  • 2018
  • Ingår i: Trends in Microbiology. - : Elsevier BV. - 0966-842X. ; 26:3, s. 220-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed.
  •  
3.
  • Karkman, Antti, et al. (författare)
  • Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 101:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Discharge of treated sewage leads to release of antibiotic resistant bacteria, resistance genes and antibiotic residues to the environment. However, it is unclear whether increased abundance of antibiotic resistance genes in sewage and sewage-impacted environments is due to on-site selection pressure by residual antibiotics, or is simply a result of fecal contamination with resistant bacteria. Here we analyze relative resistance gene abundance and accompanying extent of fecal pollution in publicly available metagenomic data, using crAssphage sequences as a marker of human fecal contamination (crAssphage is a bacteriophage that is exceptionally abundant in, and specific to, human feces). We find that the presence of resistance genes can largely be explained by fecal pollution, with no clear signs of selection in the environment, with the exception of environments polluted by very high levels of antibiotics from manufacturing, where selection is evident. Our results demonstrate the necessity to take into account fecal pollution levels to avoid making erroneous assumptions regarding environmental selection of antibiotic resistance.
  •  
4.
  • Karkman, Antti, et al. (författare)
  • Predicting clinical resistance prevalence using sewage metagenomic data
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020, The Author(s). Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance.
  •  
5.
  • Pärnänen, K, et al. (författare)
  • Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The infant gut microbiota has a high abundance of antibiotic resistance genes (ARGs) compared to adults, even in the absence of antibiotic exposure. Here we study potential sources of infant gut ARGs by performing metagenomic sequencing of breast milk, as well as infant and maternal gut microbiomes. We find that fecal ARG and mobile genetic element (MGE) profiles of infants are more similar to those of their own mothers than to those of unrelated mothers. MGEs in mothers' breast milk are also shared with their own infants. Termination of breastfeeding and intrapartum antibiotic prophylaxis of mothers, which have the potential to affect microbial community composition, are associated with higher abundances of specific ARGs, the composition of which is largely shaped by bacterial phylogeny in the infant gut. Our results suggest that infants inherit the legacy of past antibiotic consumption of their mothers via transmission of genes, but microbiota composition still strongly impacts the overall resistance load.
  •  
6.
  • Rutgersson, Carolin, 1983, et al. (författare)
  • Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome
  • 2020
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • The widespread practice of applying sewage sludge to arable land makes use of nutrients indispensable for crops and reduces the need for inorganic fertilizer, however this application also provides a potential route for human exposure to chemical contaminants and microbial pathogens in the sludge. A recent concern is that such practice could promote environmental selection and dissemination of antibiotic resistant bacteria or resistance genes. Understanding the risks of sludge amendment in relation to antibiotic resistance development is important for sustainable agriculture, waste treatment and infectious disease management. To assess such risks, we took advantage of an agricultural field trial in southern Sweden, where land used for growing different crops has been amended with sludge every four years since 1981. We sampled raw, semi-digested and digested and stored sludge together with soils from the experimental plots before and two weeks after the most recent amendment in 2017. Levels of selected antimicrobials and bioavailable metals were determined and microbial effects were evaluated using both culture-independent metagenome sequencing and conventional culturing. Antimicrobials or bioavailable metals (Cu and Zn) did not accumulate to levels of concern for environmental selection of antibiotic resistance, and no coherent signs, neither on short or long time scales, of enrichment of antibiotic-resistant bacteria or resistance genes were found in soils amended with digested and stored sewage sludge in doses up to 12 metric tons per hectare. Likewise, only very few and slight differences in microbial community composition were observed after sludge amendment. Taken together, the current study does not indicate risks of sludge amendment related to antibiotic resistance development under the given conditions. Extrapolations should however be done with care as sludge quality and application practices vary between regions. Hence, the antibiotic concentrations and resistance load of the sludge are likely to be higher in regions with larger antibiotic consumption and resistance burden than Sweden.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy