SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Björn G. Professor) "

Sökning: WFRF:(Karlsson Björn G. Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amiri, Shahnaz, 1962- (författare)
  • Economic and Environmental Benefits of CHP-based District Heating Systems in Sweden
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Future energy systems and thus the climate are affected by many factors, such as energy resources, energy demand, energy policy and the choice of energy technologies. Energy systems of the future are facing three main challenges; the steady growth of global energy demand, the energy resource depletion, as well as the increasing emissions of carbon dioxide (CO2) and other greenhouse gases and their impact on climate change. To meet the mentioned challenges with sustainability in mind, actions that increase energy efficiency and choosing an energy-efficient energy system which is cost efficient will be essential. Combined heat and power (CHP) plants and district heating and cooling could contribute greatly to increased system efficiency by using energy otherwise wasted.The aim of this study is to increase the understanding of how CHP-based district heating and cooling systems using different primary energy sources can contribute to more cost-efficient energy systems, which reduce global CO2 emissions, and to highlight the impact of some important parameters and measures on Swedish municipal district heating systems. An important assumption in this study is the estimation of CO2 emissions from electricity production, which is based on marginal electricity perspectives. In the short term, the marginal electricity is assumed to come from coal-fired condensing power plants while in the long term it consists of electricity produced by natural gas-fired combined cycle condensing power plants. This means that the local electricity production will replace the marginal electricity production. The underlying assumption is an ideal fully deregulated European electricity market where trade barriers are removed and there are no restrictions on transfer capacity.The results show that electricity generation in CHP plants, particularly in higher efficiency combined steam and gas turbine heat and power plants using natural gas, can reduce the global environmental impact of energy usage to a great extent. The results confirm, through the scenarios presented in this study, that waste as a fuel in CHP-based district heating systems is fully utilised since it has the lowest operational costs. The results also show how implementation of a biogas-based CHP plant in a biogas system contributes to an efficient system, as well as lowering both CO2 emissions and system costs. The results show that replacing electricity-driven (e.g. compression) cooling by heat-driven cooling using district heating (e.g. absorption chillers) in a CHP system is a cost-effective and climate friendly technology as electricity consumption is reduced while at the same time the electricity generation will be increased. The results of the study also show that there is potential to expand district heating systems to areas with lower heat density, with both environmental and economic benefits for the district heating companies.The results reveal that the operation of a studied CHP-based district heating system with an imposed emission limit is very sensitive to the way CO2 emissions are accounted, i.e., local CO2 emissions or emissions from marginal electricity production. The results show how the electricity production increases in the marginal case compared with the local one in order to reduce global CO2 emissions. The results also revealed that not only electricity and fuel prices but also policy instruments are important factors in promoting CHP-based district heating and cooling systems. The use of electricity certificates has a large influence for the introduction of biogas-based cogeneration. Another conclusion from the modelling is that present Swedish policy instruments are strong incentives for cogeneration with similar impact as applying external costs.
  •  
2.
  • Danestig, Maria, 1965- (författare)
  • Efficient heat supply and use from an energy-system and climate perspective
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this thesis is to illustrate whether the heat demand in district heating systems can be seen as a resource that enables efficient energy utilization, how this can be achieved and to discuss consequences of this assumption. Based on the answers to posed research questions and on the studies included in this thesis, it is concluded that the hypothesis “A common system approach for energy supply and heat demand will show climate and economic efficient solutions” is true.In cold-climate countries, energy for heating of buildings is essential and heating options that interplay with the power system through electricity use or generation have potential for efficiency improvements. In Sweden, district heating is used extensively, especially in large buildings but to a growing extent also for small houses. Some industrial heat loads and absorption cooling can complement space heating demand so that the production resources may be more evenly utilised during the seasons of the year.Rising electricity prices in recent years cause problems for the extensive use of electric heating in Sweden and further switching to district heating should be a possible option. To be economically favourable, district-heating systems require a certain heat load density. New low-energy houses and energy-efficiency measures in existing buildings decrease the heat demand in buildings and, thus, in district heating systems. Optimisation models have been used in several studies of large, complex energy systems. Such models allow scenarios with changing policy instruments and changed consumer behaviour to be analysed. Energy efficiency measures as well as good conditions for efficient electricity generation, which can replace old, inefficient plants, are needed to reduce carbon dioxide emissions from the energy sector.Results when having a European energy perspective to studies of changes in Sweden differ from when having for example a Swedish energy system perspective The effects on global carbon dioxide emissions, when studying combined heat and power electricity generation in Sweden, are greater than it is on local emissions.
  •  
3.
  • Difs, Kristina (författare)
  • District Heating and CHP : Local Possibilities for Global Climate Change Mitigation
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO2) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linköping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed.In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO2 reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO2 reduction and savings potential. However, the global CO2 reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on the DH system cost the gasification application integrated with production of renewable biofuels (SNG) for the transport sector is the investment option with the largest savings potential for lower electricity prices, while with increasing electricity prices the BIGCC and NGCC CHP plants are the most cost-effective investment options. The economic outcome for biomass gasification applications is, however, dependent on the level of policy instruments for biofuels and renewable electricity. Moreover, it was shown that the tradable green certificates for renewable electricity can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems’ potential for global CO2 emissions reductions.Also illustrated is that conversion of industrial processes, utilising electricity and fossil fuels, to DH and DC can contribute to energy savings. Since DH is mainly used for space heating, the heat demand for DH systems is strongly outdoor temperature-dependent. By converting industrial processes, where the heat demand is often dependent on process hours instead of outdoor temperature, the heat loads in DH systems can become more evenly distributed over the year, with increased base-load heat demand and increased electricity generation in CHP plants as an outcome. This extra electricity production, in combination with the freed electricity when converting electricity-using processes to DH, can replace marginal electricity production in the European electricity market, resulting in reduced global CO2 emissions.Demonstrated in this thesis is that the local energy company, along with its customers, can contribute to reaching the European Union’s targets of reducing energy use and decreasing CO2 emissions. This can be achieved in a manner that is cost-effective to both the local energy company and the customers.
  •  
4.
  • Trygg, Louise, 1966- (författare)
  • Swedish industrial and energy supply measures in a European system perspective
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A common electricity market in Europe will in all probability lead to a levelling out of the electricity price, which implies that Swedish consumers will face higher electricity prices with a European structure. This new market situation will force industry and energy suppliers to take new essential measures as actors in a deregulated European electricity market.In this thesis it is shown how over 30 Swedish small and medium-sized industries can reduce their use of electricity by about 50%. When scaling up the result to include all Swedish industry, the measures will lead to a significant reduction in global CO2 emissions, and a situation where Sweden will have a net export of electricity.Changing industrial energy use towards increased use of district heating will consequently affect the local energy suppliers. As a local energy supplier invests in CHP and co-operates on heat with an industry that has altered its energy use, the system cost will be halved. Considering higher European electricity prices, the benefits will be even higher with possibilities to reduce global emission with over 350%.In Sweden where district heating is very well established, heat driven absorption technology is especially favourable since it will lead to cost effective electricity production and increased utilization time for a CHP plant. Vapour compression chillers have been compared with heat driven absorption cooling for a local energy utility with a district cooling network and for industries in a Swedish municipality with CHP. The results show that the higher the share of absorption technology is, in comparison to compression chillers, the lower the production cost will be for producing cooling.This thesis illustrates measures for Swedish industry and energy suppliers in a fully deregulated European electricity market that will shift the energy systems in the direction of cost-effectiveness and resource effectiveness. The thesis also shows that the benefits of the measures will increase even more when accounting with electricity prices with a higher European structures. To methodically change the use of electricity would be an economical way to increase the competitiveness of Swedish plant in relation to other European plants.Taking advantage of these particularly Swedish conditions will contribute to the creation of lean resource systems, and as a result help the whole EU region to meet its commitment under the Kyoto Protocol. Altering industrial energy use towards less electricity and energy dependence will be a competitive alternative to new electricity production and help secure energy supply in the European Union.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy