SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Hannah 1979 ) "

Sökning: WFRF:(Karlsson Hannah 1979 )

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Enblad, Gunilla, et al. (författare)
  • A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia
  • 2018
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 24:24, s. 6185-6194
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The chimeric antigen receptor (CAR) T-cell therapy has been effective for patients with CD19(+) B-cell malignancies. Most studies have investigated the second-generation CARs with either CD28 or 4-1BB costimulatory domains in the CAR receptor. Here, we describe the first clinical phase I/IIa trial using third-generation CAR T cells targeting CD19 to evaluate safety and efficacy.Patients and Methods: Fifteen patients with B-cell lymphoma or leukemia were treated with CAR T cells. The patients with lymphoma received chemotherapy during CAR manufacture and 11 of 15 were given low-dose cyclophosphamide and fludarabine conditioning prior to CAR infusion. Peripheral blood was sampled before and at multiple time points after CAR infusion to evaluate the persistence of CAR T cells and for immune profiling, using quantitative PCR, flow cytometry, and a proteomic array.Results: Treatment with third-generation CAR T cells was generally safe with 4 patients requiring hospitalization due to adverse reactions. Six of the 15 patients had initial complete responses [4/11 lymphoma and 2/4 acute lymphoblastic leukemia (ALL)], and 3 of the patients with lymphoma were in remission at 3 months. Two patients are still alive. Best predictor of response was a good immune status prior to CAR infusion with high IL12, DC-Lamp, Fas ligand, and TRAIL. Responding patients had low monocytic myeloid-derived suppressor cells (MDSCs; CD14(+)CD33(+)HLA(-)DR(-)) and low levels of IL6, IL8, NAP3, sPDL1, and sPDL2.Conclusions: Third-generation CARs may be efficient in patients with advanced B-cell lymphoproliferative malignancy with only modest toxicity. Immune profiling pre- and posttreatment can be used to find response biomarkers.
  •  
2.
  • Karlsson, Hannah, 1979- (författare)
  • Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery
  • 2016
  • Ingår i: Biochemical Society Transactions. - 0300-5127 .- 1470-8752. ; 44:2, s. 371-376
  • Forskningsöversikt (refereegranskat)abstract
    • Chimaeric antigen receptor (CAR) T-cells have shown impressive results in patients with B-cell leukaemia. Yet, in patients with lymphoma durable responses are still rare and heavy preconditioning required. Apoptosis resistance is considered a hallmark of cancer, often conveyed by a halted apoptosis signalling. Tumours regularly skew the balance of the components of the apoptotic machinery either through up-regulating antiapoptotic proteins or silencing pro-apoptotic ones. Malignant B-cells frequently up-regulate anti-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins leading to therapy resistance. CAR T-cells kill tumour cells via apoptosis induction and their efficacy may be affected by the level of Bcl-2 family proteins. Hence, there is an interesting possibility to increase the effect of CAR T-cell therapy by combining it with apoptosis inhibitor blockade agents. Compounds that inhibit Bcl-2, B-cell lymphoma extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w), can restore execution of apoptosis in tumour cells or sensitize them to other apoptosis-dependent treatments. Hence, there is a great interest to combine such agents with CAR T-cell therapy to potentiate the effect of CAR T-cell killing. This review will focus on the potential of targeting the apoptotic machinery to sensitize tumour cells to CAR T-cell killing.
  •  
3.
  •  
4.
  •  
5.
  • Karlsson, Hannah, 1979- (författare)
  • CD19-targeting CAR T Cells for Treatment of B Cell Malignancies : From Bench to Bedside
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Immunotherapy for cancer is a young research field progressing at high speed. The first chimera of an antibody and a signaling chain was designed by Zelig Eshhar and was later further developed to enhance existing T cell therapy by combining a single-chain fragment of an antibody with the CD3 zeta chain of the TCR complex. T cells expressing these chimeric antigen receptors (CARs) could recognize and specifically kill tumor cells. However the T cells, lacked in persistence and tumor rejection did not occur. Thus, the CAR constructs have been improved by providing the T cell with costimulatory signals promoting activation. The focus of this thesis has been to evaluate second and third generation αCD19-CAR T cells for the treatment of B cell leukemia and lymphoma.B cell tumors commonly upregulate anti-apoptotic proteins such as Bcl-2, which generates therapy resistance. In the first paper a second generation (2G) αCD19-CD28-CAR T cell was combined with the Bcl-2 family inhibitor ABT-737. ABT-737 sensitized tumor cells to CAR T cell therapy and may be an interesting clinical combination treatment. In paper II, the phenotype and function of a third generation (3G) αCD19-CD28-4-1BB-CAR T cell were evaluated. B cell-stimulated CAR T cells showed increased proliferation and an antigen-driven accumulation of CAR+ T cells. 3G CAR T cells had equal cytotoxic capacity, similar lineage, memory and exhaustion profile phenotype compared to 2G CARs. However, 3G CAR T cells proliferated better and had increased activation of intracellular signaling pathways compared to 2G CAR T cells. In paper III, αCD19-CD28-4-1BB-CAR T cells were used to stimulate immature dendritic cells leading to an upregulation of maturation markers on co-cultured dendritic cells. Hence, CAR T cells may not only directly kill the tumor cells, but may induce bystander immunity that indirectly aids tumor control. This thesis also include supplementary information about the development and implementation of protocols for GMP production of CAR T cell batches for a phase I/IIa clinical trial currently ongoing for patients with refractory B cell leukemia and lymphoma. So far, two patients have safely been treated on the lowest dose.
  •  
6.
  •  
7.
  •  
8.
  • Karlsson, Johan, 1979-, et al. (författare)
  • Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments
  • 2018
  • Ingår i: Annual Review Of Chemical And Biomolecular Engineering, Vol 9. - : ANNUAL REVIEWS. - 1947-5446. - 9780824352097 ; , s. 105-127
  • Bokkapitel (refereegranskat)abstract
    • Polymeric nanoparticles have tremendous potential to improve the efficacy of therapeutic cancer treatments by facilitating targeted delivery to a desired site. The physical and chemical properties of polymers can be tuned to accomplish delivery across the multiple biological barriers required to reach diverse subsets of cells. The use of biodegradable polymers as nanocarriers is especially attractive, as these materials can be designed to break down in physiological conditions and engineered to exhibit triggered functionality when at a particular location or activated by an external source. We present how biodegradable polymers can be engineered as drug delivery systems to target the tumor microenvironment in multiple ways. These nanomedicines can target cancer cells directly, the blood vessels that supply the nutrients and oxygen that support tumor growth, and immune cells to promote anticancer immunotherapy.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy