SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Tomas 1964 ) "

Sökning: WFRF:(Karlsson Tomas 1964 )

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • André, Mats, et al. (författare)
  • Lower hybrid waves at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S29-S38
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the generation of waves in the lower hybrid frequency range by density gradients in the near plasma environment of comet 67P/Churyumov-Gerasimenko. When the plasma is dominated by water ions from the comet, a situation with magnetized electrons and unmagnetized ions is favourable for the generation of lower hybrid waves. These waves can transfer energy between ions and electrons and reshape the plasma environment of the comet. We consider cometocentric distances out to a few hundred km. We find that when the electron motion is not significantly interrupted by collisions with neutrals, large average gradients within tens of km of the comet, as well as often observed local large density gradients at larger distances, are often likely to be favourable for the generation of lower hybrid waves. Overall, we find that waves in the lower hybrid frequency range are likely to be common in the near plasma environment.
  •  
2.
  • Battarbee, Markus, et al. (författare)
  • Helium in the Earth's foreshock : a global Vlasiator survey
  • 2020
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 38:5, s. 1081-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • The foreshock is a region of space upstream of the Earth's bow shock extending along the interplanetary magnetic field (IMF). It is permeated by shock-reflected ions and electrons, low-frequency waves, and various plasma transients. We investigate the extent of the He2+ foreshock using Vlasiator, a global hybrid-Vlasov simulation. We perform the first numerical global survey of the helium foreshock and interpret some historical foreshock observations in a global context. The foreshock edge is populated by both proton and helium field-aligned beams, with the proton foreshock extending slightly further into the solar wind than the helium foreshock and both extending well beyond the ultra-low frequency (ULF) wave foreshock. We compare our simulation results with Magnetosphere Multiscale (MMS) Hot Plasma Composition Analyzer (HPCA) measurements, showing how the gradient of suprathermal ion densities at the foreshock crossing can vary between events. Our analysis suggests that the IMF cone angle and the associated shock obliquity gradient can play a role in explaining this differing behaviour. We also investigate wave-ion interactions with wavelet analysis and show that the dynamics and heating of He2+ must result from proton-driven ULF waves. Enhancements in ion agyrotropy are found in relation to, for example, the ion foreshock boundary, the ULF foreshock boundary, and specular reflection of ions at the bow shock. We show that specular reflection can describe many of the foreshock ion velocity distribution function (VDF) enhancements. Wave-wave interactions deep in the foreshock cause de-coherence of wavefronts, allowing He2+ to be scattered less than protons.
  •  
3.
  • Boldu, J. J., et al. (författare)
  • Langmuir waves associated with magnetic holes in the solar wind
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Langmuir waves (electrostatic waves near the electron plasma frequency) are often observed in the solar wind and may play a role in the energy dissipation of electrons. The largest amplitude Langmuir waves are typically associated with type II and III solar radio bursts and planetary foreshocks. In addition, Langmuir waves not related to radio bursts occur in the solar wind, but their source is not well understood. Langmuir waves have been observed inside isolated magnetic holes, suggesting that magnetic holes play an important role in the generation of Langmuir waves.Aims. We provide the statistical distribution of Langmuir waves in the solar wind at different heliocentric distances. In particular, we investigate the relationship between magnetic holes and Langmuir waves. We identify possible source regions of Langmuir waves in the solar wind, other than radio bursts, by analyzing the local plasma conditions.Methods. We analyzed data from Solar Orbiter's Radio and Plasma Waves (RPW) and Magnetometer (MAG) instruments. We used the triggered electric field snapshots and onboard statistical data (STAT) of the Time Domain Sampler (TDS) of RPW to identify Langmuir waves and investigate their properties. The plasma densities were derived from the spacecraft potential estimated by RPW. The MAG data were used to monitor the background magnetic field and detect magnetic holes, which are defined as regions with an isolated decrease in |B| of 50% or more compared to the background level. The statistical analysis was performed on data from 2020 to 2021, comprising heliocentric distances between 0.5 AU and 1 AU.Results. We show that 78% of the Langmuir waves in the solar wind not connected to radio bursts occur in regions of local magnetic field depletions, including the regions classified as isolated magnetic holes. We also show that the Langmuir waves occur more frequently inside magnetic holes than in any other region in the solar wind, which indicates that magnetic holes are important source regions of solar wind Langmuir waves. We find that Langmuir waves associated with magnetic holes in the solar wind typically have lower amplitudes than those associated with radio bursts.
  •  
4.
  • Breuillard, H., et al. (författare)
  • Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Using in situ measurements from different instruments on board the Rosetta spacecraft, we investigate the properties of the newly discovered low-frequency oscillations, known as singing comet waves, that sometimes dominate the close plasma environment of comet 67P/Churyumov-Gerasimenko. These waves are thought to be generated by a modified ion-Weibel instability that grows due to a beam of water ions created by water molecules that outgass from the comet. We take advantage of a cometary outburst event that occurred on 2016 February 19 to probe this generation mechanism. We analyze the 3D magnetic field waveforms to infer the properties of the magnetic oscillations of the cometary ion waves. They are observed in the typical frequency range (similar to 50 mHz) before the cometary outburst, but at similar to 20 mHz during the outburst. They are also observed to be elliptically right-hand polarized and to propagate rather closely (similar to 0-50 degrees) to the background magnetic field. We also construct a density dataset with a high enough time resolution that allows us to study the plasma contribution to the ion cometary waves. The correlation between plasma and magnetic field variations associated with the waves indicates that they are mostly in phase before and during the outburst, which means that they are compressional waves. We therefore show that the measurements from multiple instruments are consistent with the modified ion-Weibel instability as the source of the singing comet wave activity. We also argue that the observed frequency of the singing comet waves could be a way to indirectly probe the strength of neutral plasma coupling in the 67P environment.
  •  
5.
  • Cai, Lei, et al. (författare)
  • DMSP Observations of High-Latitude Dayside Aurora (HiLDA)
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 126:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report two events of high-latitude dayside aurora (HiLDA), a large-scale aurora in the dayside polar cap, observed by the Defense Meteorological Satellite Program (DMSP) spacecraft in the northern and southern hemispheres, respectively. While HiLDA in the northern hemisphere was reported before under interplanetary magnetic field (IMF) positive By conditions, we show for the first time a HiLDA event in the southern hemisphere when the IMF negative By component was dominant. Our observations also show that HiLDA is highly dynamical: change in its forms, size, location, and development of fine structures during its long lifetime of hours. The co-occurrence of HiLDA and the duskside oval-aligned transpolar aurora (TPA) may be a common feature during IMF By dominant conditions. Both are associated with the high-latitude reconnection and the cusp. Based on the linear Knight relation, we estimate the distribution of the electron density in the magnetospheric source region of HiLDA. These results indicate that HiLDA maps most probably to the high-latitude lobe tailward of the cusp, where the electron density is down to 0.03-3 cm(-3). The lobe electrons are accelerated by the field-aligned potential drop (up to 10 kV) set up in the poleward part of upward Region 0 field-aligned current (FAC). The total energy flux of HiLDA electrons can be up to 50 mW/m(2), indicating HiLDA precipitation as a potential energy source that impacts the polar ionosphere-thermosphere system.
  •  
6.
  • Collinson, Glyn A., et al. (författare)
  • Shocklets and Short Large Amplitude Magnetic Structures (SLAMS) in the High Mach Foreshock of Venus
  • 2023
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 50:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Shocklets and short large-amplitude magnetic structures (SLAMS) are steepened magnetic fluctuations commonly found in Earth's upstream foreshock. Here we present Venus Express observations from the 26th of February 2009 establishing their existence in the steady-state foreshock of Venus, building on a past study which found SLAMS during a substantial disturbance of the induced magnetosphere. The Venusian structures were comparable to those reported near Earth. The 2 Shocklets had magnetic compression ratios of 1.23 and 1.34 with linear polarization in the spacecraft frame. The 3 SLAMS had ratios between 3.22 and 4.03, two of which with elliptical polarization in the spacecraft frame. Statistical analysis suggests SLAMS coincide with unusually high solar wind Alfvén mach-number at Venus (12.5, this event). Thus, while we establish Shocklets and SLAMS can form in the stable Venusian foreshock, they may be rarer than at Earth. We estimate a lower limit of their occurrence rate of ≳14%.
  •  
7.
  • De Spiegeleer, Alexandre, et al. (författare)
  • Oscillatory Flows in the Magnetotail Plasma Sheet : Cluster Observations of the Distribution Function
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:4, s. 2736-2754
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma dynamics in Earth's magnetotail is often studied using moments of the distribution function, which results in losing information on the kinetic properties of the plasma. To better understand oscillatory flows observed in the midtail plasma sheet, we investigate two events, one in each hemisphere, in the transition region between the central plasma sheet and the lobes using the 2-D ion distribution function from the Cluster 4 spacecraft. In this case study, the oscillatory flows are a manifestation of repeated ion flux enhancements with pitch angle changing from 0 degrees to 180 degrees in the Northern Hemisphere and from 180 degrees to 0 degrees in the Southern Hemisphere. Similar pitch angle signatures are observed seven times in about 80 min for the Southern Hemisphere event and three times in about 80 min for the Northern Hemisphere event. The ion flux enhancements observed for both events are slightly shifted in time between different energy channels, indicating a possible time-of-flight effect from which we estimate that the source of particle is located similar to 5-25R(E) and similar to 40-107R(E) tailward of the spacecraft for the Southern and Northern Hemisphere event, respectively. Using a test particle simulation, we obtain similar to 21-46 R-E for the Southern Hemisphere event and tailward of X similar to - 65R(E) (outside the validity region of the model) for the Northern Hemisphere event. We discuss possible sources that could cause the enhancements of ion flux.
  •  
8.
  • De Spiegeleer, Alexandre, et al. (författare)
  • Oxygen Ion Flow Reversals in Earth's Magnetotail : A Cluster Statistical Study
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Wiley-Blackwell. - 2169-9380 .- 2169-9402. ; 124:11, s. 8928-8942
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of magnetotail flows that change direction from earthward to tailward using Cluster spacecraft. More precisely, we study 318 events of particle flux enhancements in the O+ data for which the pitch angle continuously changes with time, either from 0 degrees to 180 degrees or from 180 degrees to 0 degrees. These structures are called "Pitch Angle Slope Structures" (PASSes). PASSes for which the pitch angle changes from 0 degrees to 180 degrees are observed in the Northern Hemisphere while those for which the pitch angle changes from 180 degrees to 0 degrees are observed in the Southern Hemisphere. These flux enhancements result in a reversal of the flow direction from earthward to tailward regardless of the hemisphere where they are observed. Sometimes, several PASSes can be observed consecutively which can therefore result in oscillatory velocity signatures in the earth-tail direction. The PASS occurrence rate increases from 1.8% to 3.7% as the AE index increases from similar to 0 to similar to 600 nT. Also, simultaneously to PASSes, there is typically a decrease in the magnetic field magnitude due to a decrease (increase) of the sunward component of the magnetic field in the Northern (Southern) Hemisphere. Finally, based on the 115 (out of 318) PASSes that show energy-dispersed structures, the distance to the source from the spacecraft is estimated to be typically R-E along the magnetic field line. This study is important as it sheds light on one of the causes of tailward velocities in Earth's magnetotail.
  •  
9.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Emergence of MHD structures in a collisionless PIC simulation plasma
  • 2017
  • Ingår i: Physics of Plasmas. - Melville, NY, United States : A I P Publishing LLC. - 1070-664X .- 1089-7674. ; 24:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The expansion of a dense plasma into a dilute plasma across an initially uniform perpendicular magnetic field is followed with a one-dimensional particle-in-cell simulation over magnetohydrodynamics time scales. The dense plasma expands in the form of a fast rarefaction wave. The accelerated dilute plasma becomes separated from the dense plasma by a tangential discontinuity at its back. A fast magnetosonic shock with the Mach number 1.5 forms at its front. Our simulation demonstrates how wave dispersion widens the shock transition layer into a train of nonlinear fast magnetosonic waves.
  •  
10.
  • Dimmock, Andrew P., et al. (författare)
  • Mirror Mode Storms Observed by Solar Orbiter
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror modes (MMs) are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on MMs observed in the solar wind by Solar Orbiter (SolO) for heliocentric distances between 0.5 and 1 AU. Typically, MMs have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency MMs are measured, which have been labeled previously as MM storms. At present, only a handful of existing studies have focused on MM storms, meaning that many open questions remain. In this study, SolO has been used to investigate several key aspects of MM storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that MM storms often approach local ion scales and can no longer be treated as quasi-magnetohydrodynamic, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
tidskriftsartikel (56)
doktorsavhandling (3)
forskningsöversikt (3)
bokkapitel (3)
konferensbidrag (2)
annan publikation (1)
visa fler...
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Karlsson, Tomas, 196 ... (63)
Raptis, Savvas (17)
Gunell, Herbert (10)
Vaivads, Andris (9)
Eriksson, Anders (8)
Volwerk, M. (8)
visa fler...
Henri, P. (8)
Goetz, C (8)
Nilsson, Hans (7)
Nilsson, H (7)
André, Mats (7)
Plaschke, F. (6)
Odelstad, Elias (6)
Blanco-Cano, Xochitl (6)
Hamrin, Maria, 1972- (6)
Khotyaintsev, Yuri V ... (5)
Eriksson, Anders. I. (5)
Maksimovic, M. (4)
Soucek, J. (4)
Richter, I. (4)
Lindberg, Martin (4)
Kullen, Anita (4)
Vecchio, A. (3)
Travnicek, P. (3)
Palmroth, Minna (3)
Bale, S. D. (3)
Chust, T. (3)
Krasnoselskikh, V (3)
Kretzschmar, M. (3)
Lorfevre, E. (3)
Plettemeier, D. (3)
Steller, M. (3)
Stverak, S. (3)
Graham, Daniel B. (3)
Le Contel, O. (3)
Retino, A. (3)
Vigren, Erik (3)
Sahraoui, F. (3)
Edberg, Niklas J. T. (3)
Morooka, Michiko (3)
Wahlund, Jan-Erik (3)
Horbury, T. S. (3)
Battarbee, Markus (3)
Kajdic, Primoz (3)
Johlander, Andreas (3)
Owen, C. J. (3)
Zouganelis, I. (3)
Bylander, Lars (3)
Pisa, D. (3)
Vallieres, X. (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (65)
Uppsala universitet (23)
Umeå universitet (13)
Luleå tekniska universitet (3)
Linköpings universitet (2)
Chalmers tekniska högskola (2)
visa fler...
Göteborgs universitet (1)
Örebro universitet (1)
Lunds universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (69)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (64)
Teknik (5)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy