SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karp Daniel S.) "

Sökning: WFRF:(Karp Daniel S.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Zewinger, Stephen, et al. (författare)
  • Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease : a molecular and genetic association study
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 5:7, s. 534-543
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear.Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts.Findings: The median follow-up was 9.9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1.44, 95% CI 1.14-1.83) and the presence of either LPA SNP (1.88, 1.40-2.53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0.95, 0.81-1.11 and either LPA SNP 1.10, 0.92-1.31) or cardiovascular mortality (0.99, 0.81-1.2 and 1.13, 0.90-1.40, respectively) or in the validation studies.Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established.
  •  
4.
  • Langefeld, Carl D., et al. (författare)
  • Transancestral mapping and genetic load in systemic lupus erythematosus
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P < 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.
  •  
5.
  • Mastrángelo, Matías E., et al. (författare)
  • Key knowledge gaps to achieve global sustainability goals
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2:12, s. 1115-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional and global assessments periodically update what we know, and highlight what remains to be known, about the linkages between people and nature that both define and depend upon the state of the environment. To guide research that better informs policy and practice, we systematically synthesize knowledge gaps from recent assessments of four regions of the globe and three key themes by the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services. We assess their relevance to global sustainability goals and trace their evolution relative to those identified in the Millennium Ecosystem Assessment. We found that global sustainability goals cannot be achieved without improved knowledge on feedbacks between social and ecological systems, effectiveness of governance systems and the influence of institutions on the social distribution of ecosystem services. These top research priorities have persisted for the 14 years since the Millennium Ecosystem Assessment. Our analysis also reveals limited understanding of the role of indigenous and local knowledge in sustaining nature’s benefits to people. Our findings contribute to a policy-relevant and solution-oriented agenda for global, long-term social-ecological research.
  •  
6.
  • Alexandridis, Nikolaos, et al. (författare)
  • Archetype models upscale understanding of natural pest control response to land-use change
  • 2022
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 32:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Control of crop pests by shifting host plant availability and natural enemy activity at landscape scales has great potential to enhance the sustainability of agriculture. However, mainstreaming natural pest control requires improved understanding of how its benefits can be realized across a variety of agroecological contexts. Empirical studies suggest significant but highly variable responses of natural pest control to land-use change. Current ecological models are either too specific to provide insight across agroecosystems, or too generic to guide management with actionable predictions. We suggest getting the full benefit of available empirical, theoretical and methodological knowledge, by combining trait-mediated understanding from correlative studies with the explicit representation of causal relationships achieved by mechanistic modeling. To link these frameworks, we adapt the concept of archetypes, or context-specific generalizations, from sustainability science. Similar responses of natural pest control to land-use gradients across cases that share key attributes, such as functional traits of focal organisms, indicate general processes that drive system behavior in a context-sensitive manner. Based on such observations of natural pest control, a systematic definition of archetypes can provide the basis for mechanistic models of intermediate generality that cover all major agroecosystems worldwide. Example applications demonstrate the potential for upscaling understanding and improving prediction of natural pest control, based on knowledge transfer and scientific synthesis. A broader application of this mechanistic archetype approach promises to enhance ecology's contribution to natural resource management across diverse regions and social-ecological contexts.
  •  
7.
  • Alexandridis, Nikolaos, et al. (författare)
  • Models of natural pest control : Towards predictions across agricultural landscapes
  • 2021
  • Ingår i: Biological Control. - : Elsevier BV. - 1049-9644. ; 163
  • Forskningsöversikt (refereegranskat)abstract
    • Natural control of invertebrate crop pests has the potential to complement or replace conventional insecticide-based practices, but its mainstream application is hampered by predictive unreliability across agroecosystems. Inconsistent responses of natural pest control to changes in landscape characteristics have been attributed to ecological complexity and system-specific conditions. Here, we review agroecological models and their potential to provide predictions of natural pest control across agricultural landscapes. Existing models have used a multitude of techniques to represent specific crop-pest-enemy systems at various spatiotemporal scales, but less wealthy regions of the world are underrepresented. A realistic representation of natural pest control across systems appears to be hindered by a practical trade-off between generality and realism. Nonetheless, observations of context-sensitive, trait-mediated responses of natural pest control to land-use gradients indicate the potential of ecological models that explicitly represent the underlying mechanisms. We conclude that modelling natural pest control across agroecosystems should exploit existing mechanistic techniques towards a framework of contextually bound generalizations. Observed similarities in causal relationships can inform the functional grouping of diverse agroecosystems worldwide and the development of the respective models based on general, but context-sensitive, ecological mechanisms. The combined use of qualitative and quantitative techniques should allow the flexible integration of empirical evidence and ecological theory for robust predictions of natural pest control across a wide range of agroecological contexts and levels of knowledge availability. We highlight challenges and promising directions towards developing such a general modelling framework.
  •  
8.
  • Frishkoff, Luke O., et al. (författare)
  • Loss of avian phylogenetic diversity in neotropical agricultural systems
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6202, s. 1343-1346
  • Tidskriftsartikel (refereegranskat)abstract
    • Habitat conversion is the primary driver of biodiversity loss, yet little is known about how it is restructuring the tree of life by favoring some lineages over others. We combined a complete avian phylogeny with 12 years of Costa Rican bird surveys (118,127 detections across 487 species) sampled in three land uses: forest reserves, diversified agricultural systems, and intensive monocultures. Diversified agricultural systems supported 600 million more years of evolutionary history than intensive monocultures but 300 million fewer years than forests. Compared with species with many extant relatives, evolutionarily distinct species were extirpated at higher rates in both diversified and intensive agricultural systems. Forests are therefore essential for maintaining diversity across the tree of life, but diversified agricultural systems may help buffer against extreme loss of phylogenetic diversity.
  •  
9.
  • Karp, Daniel S., et al. (författare)
  • Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 115:33, s. 7863-7870
  • Tidskriftsartikel (refereegranskat)abstract
    • The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies. © 2018 National Academy of Sciences. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy