SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karrman Kristina) "

Sökning: WFRF:(Karrman Kristina)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Borssen, Magnus, et al. (författare)
  • Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia.
  • 2013
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL) has improved, but there is a considerable fraction of patients experiencing a poor outcome. There is a need for better prognostic markers and aberrant DNA methylation is a candidate in other malignancies, but its potential prognostic significance in T-ALL is hitherto undecided.
  •  
3.
  • Fogelstrand, Linda, 1974, et al. (författare)
  • Prognostic Implications of Mutations in NOTCH1 and FBXW7 in Childhood T-ALL Treated According to the NOPHO ALL-1992 and ALL-2000 Protocols
  • 2014
  • Ingår i: Pediatric Blood & Cancer. - : Wiley-Blackwell. - 1545-5009 .- 1545-5017. ; 61:3, s. 424-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In children, T-cell acute lymphoblastic leukemia (T-ALL) has inferior prognosis compared with B-cell precursor ALL. In order to improve survival, individualized treatment strategies and thus risk stratification algorithms are warranted, ideally already at the time of diagnosis.Procedure We analyzed the frequency and prognostic implication of mutations in NOTCH1 and FBXW7 in 79 cases of Swedish childhood T-ALL treated according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO) ALL-1992 and ALL-2000 protocols. In a subgroup of patients, we also investigated the functional relevance of NOTCH1 mutations measured as expression of the HES1, MYB, and MYC genes.Results Forty-seven of the cases (59%) displayed mutations in NOTCH1 and/or FBXW7. There was no difference in overall (P=0.14) or event-free survival (EFS) (P=0.10) in patients with T-ALL with mutation(s) in NOTCH1/FBXW7 compared with patients with T-ALL without mutations in any of these genes. T-ALL carrying NOTCH1 mutations had increased HES1 and MYB mRNA expression (HES1 9.21.9 (mean +/- SEM), MYB 8.7 +/- 0.8 (mean +/- SEM)) compared to T-ALL with wild-type NOTCH1 (HES1 1.8 +/- 0.7, MYB 5.1 +/- 1.2, P=0.02 and 0.008, respectively). In cases of T-ALL with high HES1 expression, improved overall (P=0.02) and EFS (P=0.028) was seen.Conclusions Increased NOTCH activity, reflected by increased HES1 expression, is associated with improved outcome in pediatric T-ALL, but its role as a diagnostic tool or a therapeutic target in future clinical treatment protocols remains to be elucidated. Pediatr Blood Cancer 2014;61:424-430. (c) 2013 Wiley Periodicals, Inc.
  •  
4.
  • Gorcenco, Sorina, et al. (författare)
  • Clinical and genetic analyses of a Swedish patient series diagnosed with ataxia
  • 2024
  • Ingår i: Journal of Neurology. - 0340-5354. ; 271:1, s. 526-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient’s disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as “of uncertain significance” only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist’s careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.
  •  
5.
  • Karrman, Kristina, et al. (författare)
  • Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome.
  • 2009
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 48:9, s. 795-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical characteristics and cytogenetic aberrations were ascertained and reviewed in a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias (T-ALLs) diagnosed between 1992 and 2006 in the Nordic countries. Informative karyotypic results were obtained in 249 (87%) cases, of which 119 (48%) were cytogenetically abnormal. Most (62%) of the aberrant T-ALLs were pseudodiploid. Structural changes were more common than numerical ones; 86% displayed at least one structural abnormality and 41% at least one numerical anomaly. The most frequent abnormalities were T-cell receptor (TCR) gene rearrangements (20%) [TCR;11p13 (10%), TCR;10q24 (3%), TCR;other (8%)], del(9p) (17%), +8 (14%), del(6q) (12%), and 11q23 rearrangements (6%). The TCR;other group comprised the rare rearrangements t(X;14)(p11;q11), t(X;7)(q22;q34), t(1;14)(p32;q11), ins(14;5)(q11;q?q?), inv(7)(p15q34), t(8;14)(q24;q11), t(7;11)(q34;p15), and t(12;14)(p13;q11). The clinical characteristics of this Nordic patient cohort agreed well with previous larger series, with a median age of 9.0 years, male predominance (male/female ratio 3.1), median white blood cell (WBC) count of 66.5 x 10(9)/l, and a high incidence of mediastinal mass and central nervous system involvement (59% and 9.5%, respectively). These features did not differ significantly among the various genetic subgroups. 5-year event-free survival (EFS) and overall survival for all patients were 0.61 (+/-0.03) and 0.67 (+/-0.03), respectively. In a multivariate analysis, two factors affected negatively the EFS, namely a WBC count of > or =200 x 10(9)/l (P < 0.001) and the presence of rare TCR rearrangements (P = 0.001). In conclusion, in this large series of childhood T-ALLs from the Nordic countries, the cytogenetic findings were not associated with risk of therapy failure with the exception of the TCR;other group. However, further prospective and collaborative investigations of this genetically heterogeneous entity are needed to confirm these results.
  •  
6.
  • Karrman, Kristina, et al. (författare)
  • Comprehensive genetic characterization of pediatric T-cell acute lymphoblastic leukemia
  • 2014
  • Ingår i: Blood. - 1528-0020. ; 124:21, s. 1084-1084
  • Konferensbidrag (refereegranskat)abstract
    • A comprehensive genetic characterization comprising conventional chromosome banding, fluorescence in situ hybridization (FISH), and single nucleotide polymorphism (SNP) array analyses as well as large-scale sequencing of 75 genes were performed on a consecutive series of 47 pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients. An abnormal karyotype was identified in 46% of the cases. Recurrent cytogenetic aberrations comprised T-cell receptor (TCR) translocations and deletions of 6q and 9p. FISH analyses of TCR rearrangements were positive in 26% of the investigated cases. The vast majority (37/39; 95%) of cases analyzed by SNP arrays displayed aberrations, with a median of 3 changes (range 0-11) per case. The genes recurrently deleted were CDKN2A, CDKN2B, LEF1, PTEN, RBI, and STIL. One case displayed chromothripsis involving 6q. No case had a whole chromosome uniparental isodisomy (wUPID); in fact, only one T-ALL of 123 informative cases in the literature has had a wUPID. However, segmental UPIDs (sUPIDs) were seen in 44% of the present cases, with most being sUPID9p. CDKN2A was homozygously deleted in all cases with sUPID9p, with a heterozygous deletion occurring prior to the sUPID9p in all instances. There was no evidence for chromosomal instability when comparing diagnostic and relapse samples. Among the genes sequenced, 14 were mutated in 28 cases. The genes targeted are involved in signaling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse, showing that such mutations also can be secondary events. These findings support a multistep leukemogenic process.
  •  
7.
  • Karrman, Kristina, et al. (författare)
  • Cytogenetic evolution patterns in CML post-SCT.
  • 2007
  • Ingår i: Bone Marrow Transplantation. - : Springer Science and Business Media LLC. - 1476-5365 .- 0268-3369. ; 39:3, s. 165-171
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytogenetic evolution patterns in chronic myeloid leukemia (CML) after allogeneic ( allo) stem cell transplantation (SCT) are different from the ones observed in non-transplanted patients, a phenomenon suggested to be caused by the conditioning regime. We reviewed 131 CMLs displaying karyotypic evolution after SCT (122 allo, nine autologous (auto)), treated at Lund University Hospital or reported in the literature. Major route abnormalities (i.e., +8, +Ph, i(17q), +19, +21, +17 and -7) were seen in 14%, balanced aberrations in 61%, hyperdiploidy in 19%, pseudodiploidy in 79%, divergent clones in 14%, and Ph-negative clones in 21%. The breakpoints involved in secondary structural rearrangements clustered at 1q21, 1q32, 7q22, 9q34, 11q13, 11q23, 12q24, 13q14, 17q10 and 22q11. Cytogenetic abnormalities common in AML after genotoxic exposure, that is, der(1;7)(q10; p10), del(3p), -5, del(5q), -7, -17, der(17p), -18, and -21, were only rarely seen post-SCT. Comparing the cytogenetic features in relation to type of SCT revealed that balanced aberrations were significantly more common after allo than after auto SCT (64 and 22%, respectively, P = 0.03). In addition, there was a trend as regards hyperdiploidy being more common after auto (P = 0.07) and pseudodiploidy being more frequent after allo SCT (P = 0.09). Possible reasons for these differences are discussed.
  •  
8.
  • Karrman, Kristina, et al. (författare)
  • Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A
  • 2015
  • Ingår i: Journal of Hematology & Oncology. - : Springer Science and Business Media LLC. - 1756-8722. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that arises in a multistep fashion through acquisition of several genetic aberrations, subsequently giving rise to a malignant, clonal expansion of T-lymphoblasts. The aim of the present study was to identify additional as well as cooperative genetic events in T-ALL.Methods: A population-based pediatric T-ALL series comprising 47 cases was investigated by SNP array and deep sequencing analyses of 75 genes, in order to ascertain pathogenetically pertinent aberrations and to identify cooperative events.Results: The majority (92%) of cases harbored copy number aberrations/uniparental isodisomies (UPIDs), with a median of three changes (range 0-11) per case. The genes recurrently deleted comprised CDKN2A, CDKN2B, LEF1, PTEN, RBI, and STIL. No case had a whole chromosome UPID; in fact, literature data show that this is a rare phenomenon in T-ALL. However, segmental UPIDs (sUPIDs) were seen in 42% of our cases, with most being sUPID9p that always were associated with homozygous CDKN2A deletions, with a heterozygous deletion occurring prior to the sUPID9p in all instances. Among the 75 genes sequenced, 14 (19%) were mutated in 28 (72%) of 39 analyzed cases. The genes targeted are involved in signaling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse; thus, such mutations can be secondary events.Conclusions: Deep sequencing and SNP array analyses of T-ALL revealed lack of wUPIDs, a high proportion of sUPID9p targeting CDKN2A, NOTCH1 mutations in subclones, and recurrent mutations of genes involved in signaling transduction, epigenetic regulation, and transcription.
  •  
9.
  •  
10.
  • Karrman, Kristina (författare)
  • Genetic Characterization of Pediatric T-cell Acute Lymphoblastic Leukemia
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of my thesis has been to characterize genetically pediatric T-cell acute lymphoblastic leukemia (T-ALL). Articles I and II focus on molecular characterization of translocations involving T-cell receptor (TCR) loci. These types of aberration are characteristic for T-ALL and have previously proved pivotal in the identification of genes implicated in leukemogenesis. The translocation t(12;14)(p13;q11) was shown to result in overexpression of CCND2. The t(12;14) is the first neoplasia-associated translocation shown to result in overexpression of CCND2 and the first example of a targeted deregulation of a member of the cyclin-encoding gene family in T-ALL. Cyclin D proteins are crucial to the cell cycle machinery and hence potential oncogenes. The second translocation cloned, t(X;7)(q22;q34), had not previously been reported in a neoplastic disorder. Breakpoint analysis revealed IRS4 as a novel translocation partner to a TCR locus, resulting in deregulated IRS4 expression, both at the gene and protein level. IRS4 plays an important part in several intracellular signalling cascades, including PI3K-AKT, known to be activated in T-ALL. In a subsequent work, I showed that IRS4 can also be targeted by alternative mechanisms in T-ALL, apart from TCR translocations, namely by mutations (Article IV). In Article III, clinical characteristics and cytogenetic aberrations were ascertained and reviewed in a large, population-based Nordic series of 285 pediatric T-ALLs. Survival analyses revealed a correlation between rare TCR translocations and inferior outcome, an association that awaits confirmation in a separate study. Finally, I used several different techniques – fluorescence in situ hybridization, single nucleotide polymorphism (SNP) array, and deep sequencing of 75 selected candidate genes – to characterize co-operative genetic aberrations in a consecutive series of paediatric T-ALL (Article V). One common change identified by SNP array was segemtal uniparental isodisomy (sUPID). This aberration was seen in 44% of the investigated cases, with most being sUPID9p that always were associated with homozygous CDKN2A deletions, with a heterozygous deletion occurring prior to the sUPID9p in all instances. Among the 75 genes investigated by deep sequencing, 14 were mutated in 28 cases. The genes targeted are involved in signalling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse, showing that such mutations also can be secondary events. These findings support a multistep leukemogenic process in pediatric T-ALL. In summary, through different approaches and by various methods, the articles included in this thesis have deciphered genetic aberrations in pediatric T-ALL, contributing to a better understanding of leukemogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (11)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Johansson, Bertil (10)
Forestier, Erik (6)
Fioretos, Thoas (5)
Behrendtz, Mikael (4)
Paulsson, Kajsa (3)
Palmqvist, Lars, 196 ... (3)
visa fler...
Ehrencrona, Hans (3)
Abrahamsson, Jonas, ... (2)
Heldrup, Jesper (2)
Biloglav, Andrea (2)
Andersson, Anna (2)
Heim, Sverre (2)
Englund, Elisabet (2)
Ehinger, Mats (2)
Wallenius, Joel (2)
Puschmann, Andreas (2)
Heyman, Mats (2)
Andersen, Mette K. (2)
Autio, Kirsi (2)
Hovland, Randi (2)
Lassen, Carin (2)
Degerman, Sofie (2)
Isaksson, Margareth (2)
OLSSON, LINDA (2)
Castor, Anders (2)
Hasle, Henrik (1)
Olofsson, Tor (1)
Roos, Göran (1)
Golovleva, Irina (1)
Fogelstrand, Linda, ... (1)
Ameur, Adam (1)
Sallerfors, B (1)
Heinonen, Kristina (1)
Johannsson, Johann H ... (1)
Kjeldsen, Eigil (1)
Nordgren, Ann (1)
Strömbeck, Bodil (1)
Sjögren, Helene, 196 ... (1)
Ilinca, Andreea (1)
Staffas, Anna, 1982 (1)
Davidsson, Josef (1)
Arvidsson, Andreas (1)
Wasslavik, Carina (1)
Blennow, Elisabeth (1)
Nguyen-Khac, Florenc ... (1)
Persson, Staffan (1)
Borgström, Georg (1)
Lenhoff, S (1)
Berger, Roland (1)
Bernard, Olivier (1)
visa färre...
Lärosäte
Lunds universitet (14)
Umeå universitet (5)
Göteborgs universitet (3)
Uppsala universitet (3)
Linköpings universitet (3)
Karolinska Institutet (2)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy