SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kasliwal R) "

Sökning: WFRF:(Kasliwal R)

  • Resultat 1-10 av 136
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petroff, E., et al. (författare)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
3.
  • Andreoni, I., et al. (författare)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
4.
  • Anand, S., et al. (författare)
  • Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j
  • 2020
  • Ingår i: Nature Astronomy. - : Nature Research. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • LIGO and Virgo’s third observing run revealed the first neutron star–black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements1,2 creating optical/near-infrared ‘kilonova’ emission. The joint gravitational wave and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter3, and independently measure the local expansion rate of the Universe4. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility5. The Zwicky Transient Facility observed ~48% of S200105ae and ~22% of S200115j’s localization probabilities, with observations sensitive to kilonovae brighter than −17.5 mag fading at 0.5 mag d−1 in the g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art kilonova models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with observed depths of apparent magnitude ~22 mag, attainable in metre-class, wide-field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high black hole spins and large neutron star radii.
  •  
5.
  • Brennan, Seán J., 1995-, et al. (författare)
  • Spectroscopic observations of progenitor activity 100 days before a Type Ibn supernova
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He I emission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peak r-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca II triplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.
  •  
6.
  • Fremling, C., et al. (författare)
  • The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 895:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible northern sky (similar to 3 pi) with newly found transient candidates announced via public alerts. The ZTF Bright Transient Survey (BTS) is a large spectroscopic campaign to complement the photometric survey. BTS endeavors to spectroscopically classify all extragalactic transients with m(peak) <= 18.5 mag in either the g(ZTF) or r(ZTF) filters, and publicly announce said classifications. BTS discoveries are predominantly supernovae (SNe), making this the largest flux-limited SN survey to date. Here we present a catalog of 761 SNe, classified during the first nine months of ZTF (2018 April 1-2018 December 31). We report BTS SN redshifts from SN template matching and spectroscopic host-galaxy redshifts when available. We analyze the redshift completeness of local galaxy catalogs, the redshift completeness fraction (RCF; the ratio of SN host galaxies with known spectroscopic redshift prior to SN discovery to the total number of SN hosts). Of the 512 host galaxies with SNe Ia, 227 had previously known spectroscopic redshifts, yielding an RCF estimate of 44% 4%. The RCF decreases with increasing distance and decreasing galaxy luminosity (for z < 0.05, or similar to 200 Mpc, RCF 0.6). Prospects for dramatically increasing the RCF are limited to new multifiber spectroscopic instruments or wide-field narrowband surveys. Existing galaxy redshift catalogs are only similar to 50% complete at r 16.9 mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events or sources of ultra-high-energy cosmic rays or neutrinos.
  •  
7.
  • Miller, A. A., et al. (författare)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
8.
  • Blagorodnova, N., et al. (författare)
  • iPTF16fnl : A Faint and Fast Tidal Disruption Event in an E plus A Galaxy
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 844:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute mag M-g = -17.2. The maximum bolometric luminosity (from optical and UV) was L-p similar or equal to (1.0 +/- 0.15) x 10(43) erg s(-1), an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with L proportional to e(-(t-t0)/T), where t(0) = 57631.0 (MJD) and tau similar or equal to 15 days. The X-ray shows a marginal detection at L-X = 2.4(-1.1)(1.9) x 10(39) erg s(-1) (Swift X-ray Telescope). No radio counterpart was detected down to 3s, providing upper limits for monochromatic radio luminosities of nu L-nu < 2.3 x 10(36) erg s(-1) and nLn < 1.7 x 10(37) erg s(-1) (Very Large Array, 6.1 and 22 GHz). The blackbody temperature, obtained from combined Swift UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and Ha emission lines, with FWHMs of about 14,000 km s(-1) and 10,000 km s(-1), respectively. He. I lines are also detected at lambda lambda 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of similar to 650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low-luminosity events may have gone unnoticed in previous searches.
  •  
9.
  • Fremling, C., et al. (författare)
  • ZTF18aalrxas : A Type IIb Supernova from a Very Extended Low-mass Progenitor
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 878:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility. ZTF18aalrxas was discovered while the optical emission was still rising toward the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (ultraviolet and optical) light curves (LCs), and optical spectra spanning from approximate to 0.7 to approximate to 480 days past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium model that simultaneously reproduces both the Ni-56-powered bolometric LC and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 M-circle dot) and the total ejecta mass (1.7 M-circle dot) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius (790-1050 R-circle dot) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spectrum is modeled and analyzed to constrain the amount of ejected oxygen (0.3-0.5 M-circle dot) and the total hydrogen mass (approximate to 0.15 M-circle dot) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low (12-13 M-circle dot) zero-age main-sequence mass progenitor. The LCs and spectra of ZTF18aalrxas are not consistent with massive single-star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.
  •  
10.
  • Kasliwal, M. M., et al. (författare)
  • Illuminating gravitational waves : A concordant picture of photons from a neutron star merger
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1559-
  • Tidskriftsartikel (refereegranskat)abstract
    • Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 136

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy