SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kasper Markus) "

Sökning: WFRF:(Kasper Markus)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boccaletti, Anthony, et al. (författare)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
2.
  •  
3.
  • Viswanath, Gayathri, et al. (författare)
  • Constraints on the nearby exoplanet ϵ Indi Ab from deep near- and mid-infrared imaging limits
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The past decade has seen increasing efforts in detecting and characterising exoplanets using high-contrast imaging in the near- and mid-infrared, which is the optimal wavelength domain for studying old, cold planets. In this work, we present deep adaptive optics imaging observations of the nearby Sun-like star E Ind A with the NaCo (L ') and NEAR (10-12.5 microns) instruments at VLT in an attempt to directly detect its planetary companion, whose presence has been indicated from radial velocity (RV) and astrometric trends. We derive brightness limits from the non-detection of the companion with both instruments and interpret the corresponding sensitivity in mass based on both cloudy and cloud-free atmospheric and evolutionary models. For an assumed age of 5 Gyr for the system, we get detectable mass limits as low as 4.4 M-J in NaCo L ' and 8.2 M-J in NEAR bands at 1.5 ' ' from the central star. If the age assumed is 1 Gyr, we reach even lower mass limits of 1.7 M-J in NaCo L ' and 3.5 M-J in NEAR bands at the same separation. However, based on the dynamical mass estimate (3.25 M-J) and ephemerides from astrometry and RV, we find that the non-detection of the planet in these observations puts a constraint of 2 Gyr on the lower age limit of the system. NaCo offers the highest sensitivity to the planetary companion in these observations, but the combination with the NEAR wavelength range adds a considerable degree of robustness against uncertainties in the atmospheric models. This underlines the benefits of including a broad set of wavelengths for the detection and characterisation of exoplanets in direct imaging studies.
  •  
4.
  • Abazov, V. M., et al. (författare)
  • The upgraded DO detector
  • 2006
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
  •  
5.
  • Andersen, Kasper Winther, et al. (författare)
  • Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:2, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres. This complicates the detection of disease-related damage in large parts of cerebral white matter where microstructure physiologically displays a high degree of fibre dispersion. To resolve this ambiguity, we employed a novel tensor-valued encoding method for diffusion MRI, which yields a microscopic fractional anisotropy metric that is unaffected by regional variations in orientation dispersion. In 26 patients with relapsing-remitting multiple sclerosis, 14 patients with primary-progressive multiple sclerosis and 27 age-matched healthy controls, we compared standard fractional anisotropy mapping with the novel microscopic fractional anisotropy mapping method, focusing on normal-appearing white matter. Mean microscopic fractional anisotropy and standard fractional anisotropy of normal-appearing white matter were significantly reduced in both patient groups relative to healthy controls, but microscopic fractional anisotropy yielded a better reflection of disease-related white-matter alterations. The reduction in mean microscopic fractional anisotropy showed a significant positive linear relationship with physical disability, as reflected by the expanded disability status scale. Mean reduction of microscopic fractional anisotropy in normal-appearing white matter also scaled positively with individual cognitive dysfunction, as measured with the symbol digit modality test. Mean microscopic fractional anisotropy reduction in normal-appearing white matter also showed a positive relationship with total white-matter lesion load as well as lesion load in specific tract systems. None of these relationships between normal-appearing white-matter microstructure and clinical, cognitive or structural measures emerged when using mean fractional anisotropy. Together, the results provide converging evidence that microscopic fractional anisotropy mapping substantially advances the assessment of cerebral white matter in multiple sclerosis by disentangling microstructure damage from variations in physiological fibre orientation dispersion at the stage of data acquisition. Since tensor-valued encoding can be implemented in routine diffusion MRI, microscopic fractional anisotropy mapping bears considerable potential for the future assessment of disease progression in normal-appearing white matter in both relapsing-remitting and progressive forms of multiple sclerosis as well as other white-matter-related brain diseases.
  •  
6.
  • Bartenstein, Markus, et al. (författare)
  • Atoms and wires : Toward atom chips
  • 2000
  • Ingår i: IEEE journal of quantum electronics. - : IEEE. ; 36:12, s. 1364-1377
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Boccaletti, A., et al. (författare)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
8.
  • Bonavita, M., et al. (författare)
  • New binaries from the SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
9.
  • Bonnefoy, M., et al. (författare)
  • First light of the VLT planet finder SPHERE IV. Physical and chemical properties of the planets around HR8799
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (similar to 30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R similar to 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III).Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work.Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T-eff, log g, M/H).Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2 sigma) the whole set of spectrophotometric datapoints available for HR8799 d and e for T-eff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate.Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H-2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.
  •  
10.
  • Bonnefoy, M., et al. (författare)
  • The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The G-type star GJ504A is known to host a 3-35 M-Jup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 mu m) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 +/- 0.04 R-circle dot for GJ504A. The radius yields isochronal ages of 21 +/- 2 Myr or 4.0 +/- 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4(-4.3)(+3.8) degrees or 18.6(-3.8)(+4.3) degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 mu m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (<= 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T-eff = 550 +/- 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L-circle dot = 6.15 +/- 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T-eff yield masses of M = 1.3(-0.3)(+0.6) M-Jup and M = 23(-9)(+10) M-Jup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M-Jup with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (47)
konferensbidrag (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Janson, Markus (27)
Kasper, M (25)
Feldt, M. (24)
Gratton, R. (24)
Desidera, S. (24)
Boccaletti, A. (24)
visa fler...
Chauvin, G. (23)
Langlois, M. (23)
Bonnefoy, M. (23)
Lagrange, A.-M. (23)
Maire, A.-L. (23)
Zurlo, A. (23)
Vigan, A. (23)
Mesa, D. (22)
Wildi, F. (22)
Beuzit, J-L (20)
Sissa, E. (20)
Mouillet, D. (19)
Galicher, R. (19)
Hagelberg, J. (17)
Biller, B. (17)
Cheetham, A. (17)
Meyer, M. (16)
Dominik, C. (16)
Henning, T. (16)
Ménard, F. (16)
Perrot, C. (16)
Delorme, P. (14)
Peretti, S. (14)
Ligi, R. (14)
Schmidt, T. (13)
Turatto, M. (13)
Udry, S. (13)
Cantalloube, F. (13)
Bonavita, M. (13)
Cudel, M. (13)
Salter, G. (13)
Fantinel, D. (12)
Brandner, W. (12)
Fusco, T. (12)
Pavlov, A. (12)
D'Orazi, V (12)
Ginski, C. (12)
Antichi, J. (12)
Cascone, E. (11)
De Caprio, V (11)
Gluck, L. (11)
Samland, M. (11)
Stadler, E. (11)
Lazzoni, C. (11)
visa färre...
Lärosäte
Stockholms universitet (31)
Lunds universitet (9)
Uppsala universitet (8)
Chalmers tekniska högskola (4)
RISE (3)
Göteborgs universitet (2)
visa fler...
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
Sveriges Lantbruksuniversitet (2)
Mälardalens universitet (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (45)
Medicin och hälsovetenskap (4)
Teknik (3)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy