SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kasvandik S) "

Sökning: WFRF:(Kasvandik S)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boggavarapu, NR, et al. (författare)
  • Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 33811-
  • Tidskriftsartikel (refereegranskat)abstract
    • The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity.
  •  
2.
  •  
3.
  • Lahtvee, Petri-Jaan, 1985, et al. (författare)
  • Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast
  • 2017
  • Ingår i: Cell Systems. - : Elsevier BV. - 2405-4712 .- 2405-4720. ; 4:5, s. 495-504.e5
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein synthesis is the most energy-consuming process in a proliferating cell, and understanding what controls protein abundances represents a key question in biology and biotechnology. We quantified absolute abundances of 5,354 mRNAs and 2,198 proteins in Saccharomyces cerevisiae under ten environmental conditions and protein turnover for 1,384 proteins under a reference condition. The overall correlation between mRNA and protein abundances across all conditions was low (0.46), but for differentially expressed proteins (n = 202), the median mRNA-protein correlation was 0.88. We used these data to model translation efficiencies and found that they vary more than 400-fold between genes. Non-linear regression analysis detected that mRNA abundance and translation elongation were the dominant factors controlling protein synthesis, explaining 61% and 15% of its variance. Metabolic flux balance analysis further showed that only mitochondrial fluxes were positively associated with changes at the transcript level. The present dataset represents a crucial expansion to the current resources for future studies on yeast physiology.
  •  
4.
  • Sánchez, Benjamín José, 1988, et al. (författare)
  • Benchmarking accuracy and precision of intensity-based absolute quantification of protein abundances in Saccharomyces cerevisiae
  • 2021
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 21:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein quantification via label-free mass spectrometry (MS) has become an increasingly popular method for predicting genome-wide absolute protein abundances. A known caveat of this approach, however, is the poor technical reproducibility, that is, how consistent predictions are when the same sample is measured repeatedly. Here, we measured proteomics data for Saccharomyces cerevisiae with both biological and inter-batch technical triplicates, to analyze both accuracy and precision of protein quantification via MS. Moreover, we analyzed how these metrics vary when applying different methods for converting MS intensities to absolute protein abundances. We demonstrate that our simple normalization and rescaling approach can perform as accurately, yet more precisely, than methods which rely on external standards. Additionally, we show that inter-batch reproducibility is worse than biological reproducibility for all evaluated methods. These results offer a new benchmark for assessing MS data quality for protein quantification, while also underscoring current limitations in this approach.
  •  
5.
  • Xia, Jianye, 1980, et al. (författare)
  • Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae is a widely used cell factory; therefore, it is important to understand how it organizes key functional parts when cultured under different conditions. Here, we perform a multiomics analysis of S. cerevisiae by culturing the strain with a wide range of specific growth rates using glucose as the sole limiting nutrient. Under these different conditions, we measure the absolute transcriptome, the absolute proteome, the phosphoproteome, and the metabolome. Most functional protein groups show a linear dependence on the specific growth rate. Proteins engaged in translation show a perfect linear increase with the specific growth rate, while glycolysis and chaperone proteins show a linear decrease under respiratory conditions. Glycolytic enzymes and chaperones, however, show decreased phosphorylation with increasing specific growth rates; at the same time, an overall increased flux through these pathways is observed. Further analysis show that even though mRNA levels do not correlate with protein levels for all individual genes, the transcriptome level of functional groups correlates very well with its corresponding proteome. Finally, using enzyme-constrained genome-scale modeling, we find that enzyme usage plays an important role in controlling flux in amino acid biosynthesis. Understanding how yeast organizes its functional proteome is a fundamental task in systems biology. Here, the authors conduct a multiomics analysis on yeast cells cultured with different growth rates, identifying a linear dependence of the functional proteome on the growth rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy