SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kataria Satender) "

Sökning: WFRF:(Kataria Satender)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fan, Xuge, et al. (författare)
  • Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure
  • 2018
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The shape and density of grain boundary defects in graphene strongly influence its electrical, mechanical, and chemical properties. However, it is difficult and elaborate to gain information about the large-area distribution of grain boundary defects in graphene. An approach is presented that allows fast visualization of the large-area distribution of grain boundary–based line defects in chemical vapor deposition graphene after transferring graphene from the original copper substrate to a silicon dioxide surface. The approach is based on exposing graphene to vapor hydrofluoric acid (VHF), causing partial etching of the silicon dioxide underneath the graphene as VHF diffuses through graphene defects. The defects can then be identified using optical microscopy, scanning electron microscopy, or Raman spectroscopy. The methodology enables simple evaluation of the grain sizes in polycrystalline graphene and can therefore be a valuable procedure for optimizing graphene synthesis processes.
  •  
2.
  • Lupina, Grzegorz, et al. (författare)
  • Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:5, s. 4776-4785
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.
  •  
3.
  • Schwarz, Mike, et al. (författare)
  • The Schottky barrier transistor in emerging electronic devices
  • 2023
  • Ingår i: Nanotechnology. - 1361-6528 .- 0957-4484. ; 34:35
  • Forskningsöversikt (refereegranskat)abstract
    • This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics. For high performance computing, the SB typically needs to be minimized to achieve optimal performance and we explore the methods adopted in carbon nanotube technology and two-dimensional electronics. On the contrary for ubiquitous electronics, the SB can be used advantageously in source-gated transistors and reconfigurable field-effect transistors (FETs) for sensors, neuromorphic hardware and security applications. Similarly, judicious use of an SB can be an asset for applications involving Josephson junction FETs.
  •  
4.
  • Smith, Anderson D., et al. (författare)
  • Resistive graphene humidity sensors with rapid and direct electrical readout
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 7:45, s. 19099-19109
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N-2), oxygen (O-2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO(2)d substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.
  •  
5.
  • Smith, Anderson D., et al. (författare)
  • Wafer-Scale Statistical Analysis of Graphene FETs-Part I : Wafer-Scale Fabrication and Yield Analysis
  • 2017
  • Ingår i: IEEE Transactions on Electron Devices. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9383 .- 1557-9646. ; 64:9, s. 3919-3926
  • Tidskriftsartikel (refereegranskat)abstract
    • Wafer-scale, CMOS compatible graphene transfer has been established for device fabrication and can be integrated into a conventional CMOS process flow back end of the line. In Part I of this paper, statistical analysis of graphene FET (GFET) devices fabricated on wafer scale is presented. Device yield is approximately 75% (for 4500 devices) measured in terms of the quality of the top gate, oxide layer, and graphene channel. Statistical evaluation of the device yield reveals that device failure occurs primarily during the graphene transfer step. In Part II of this paper, device statistics are further examined to reveal the primary mechanism behind device failure. The analysis from Part II suggests that significant improvements to device yield, variability, and performance can be achieved through mitigation of compressive strain introduced in the graphene layer during the graphene transfer process. The combined analyses from Parts I and II present an overview of mechanisms influencing GFET behavior as well as device yield. These mechanisms include residues on the graphene surface, tears, cracks, contact resistance at the graphene/metal interface, gate leakage as well as the effects of postprocessing.
  •  
6.
  • Smith, Anderson D., et al. (författare)
  • Wafer-Scale Statistical Analysis of Graphene Field-Effect Transistors-Part II : Analysis of Device Properties
  • 2017
  • Ingår i: IEEE Transactions on Electron Devices. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9383 .- 1557-9646. ; 64:9, s. 3927-3933
  • Tidskriftsartikel (refereegranskat)abstract
    • In Part I, we have established a wafer-scale, CMOS compatible graphene transfer for the back end of the line integration. In Part II of this paper, we analyze statistical data of device properties and draw conclusions about possible causes of device failure. Statistical analysis is performed for device mobility and compared with the yield analysis. To complement this analysis, detailed Raman spectra are employed to analyze strain. In addition, device models developed in Part I are examined and provide further insight. From the analysis, it appears that compressive strain introduced during the graphene transfer process is may be the primary source for device failure. Moreover, we speculate based on the device statistics that the mitigation of compressive strain will improve device mobility, carrier density, and reduce variability. In addition, the presence of residues, tears, and cracks in the graphene may result in some device failure.
  •  
7.
  • Wagner, Stefan, et al. (författare)
  • Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization
  • 2017
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:3, s. 1504-1511
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.
  •  
8.
  • Wang, Xiaojing, et al. (författare)
  • Transfer printing of nanomaterials and microstructures using a wire bonder
  • 2019
  • Ingår i: Journal of Micromechanics and Microengineering. - : Institute of Physics Publishing (IOPP). - 0960-1317 .- 1361-6439. ; 29:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalable and cost-efficient transfer of nanomaterials and microstructures from their original fabrication substrate to a new host substrate is a key challenge for realizing heterogeneously integrated functional systems, such as sensors, photonics, and electronics. Here we demonstrate a high-throughput and versatile integration method utilizing conventional wire bonding tools to transfer-print carbon nanotubes (CNTs) and silicon microstructures. Standard ball stitch wire bonding cycles were used as scalable and high-speed pick-and-place operations to realize the material transfer. Our experimental results demonstrated successful transfer printing of single-walled CNTs (100 μm-diameter patches) from their growth substrate to polydimethylsiloxane, parylene, or Au/parylene electrode substrates, and realization of field emission cathodes made of CNTs on a silicon substrate. Field emission measurements manifested excellent emission performance of the CNT electrodes. Further, we demonstrated the utility of a high-speed wire bonder for transfer printing of silicon microstructures (60 μm × 60 μm × 20 μm) from the original silicon on insulator substrate to a new host substrate. The achieved placement accuracy of the CNT patches and silicon microstructures on the target substrates were within ± 4 μm. These results show the potential of using established and extremely cost-efficient semiconductor wire bonding infrastructure for transfer printing of nanomaterials and microstructures to realize integrated microsystems and flexible electronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy