SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kavan M) "

Sökning: WFRF:(Kavan M)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Aghaei, Mohammadreza, et al. (författare)
  • Collective Intelligence for Energy Flexibility - Collectief : An EU H2020 Project for Enhancing Energy Efficiency and Flexibility in Existing Buildings
  • 2023
  • Ingår i: 2023 International Conference on Future Energy Solutions, FES 2023. - 9798350332308
  • Konferensbidrag (refereegranskat)abstract
    • COLLECTiEF (Collective Intelligence for Energy Flexibility) is an EU-funded H2020 project running from June 2021 to May 2025. COLLECTiEF aims to enhance, implement, test, and evaluate an interoperable and saleable energy management system based on collective intelligence that allows easy and seamless integration of legacy equipment into a collaborative network within and between existing buildings and urban energy systems with reduced installation cost, data transfer, and computational power while increasing user comfort, energy flexibility, climate resilience, and data security. To achieve this goal, the COLLECTiEF solution requires the development of software and hardware packages to smart up buildings and their legacy equipment on a large scale while maintaining simple and robust communication with the energy grid. Here, we present the project concept, structure, objectives, and working packages. Furthermore, the main progress and achievements obtained during the first two years of the project are presented.
  •  
7.
  •  
8.
  • Deng, Zhang, et al. (författare)
  • Using urban building energy modeling to quantify the energy performance of residential buildings under climate change
  • 2023
  • Ingår i: Building Simulation. - 1996-3599. ; 16:9, s. 1629-1643
  • Tidskriftsartikel (refereegranskat)abstract
    • The building sector is facing a challenge in achieving carbon neutrality due to climate change and urbanization. Urban building energy modeling (UBEM) is an effective method to understand the energy use of building stocks at an urban scale and evaluate retrofit scenarios against future weather variations, supporting the implementation of carbon emission reduction policies. Currently, most studies focus on the energy performance of archetype buildings under climate change, which is hard to obtain refined results for individual buildings when scaling up to an urban area. Therefore, this study integrates future weather data with an UBEM approach to assess the impacts of climate change on the energy performance of urban areas, by taking two urban neighborhoods comprising 483 buildings in Geneva, Switzerland as case studies. In this regard, GIS datasets and Swiss building norms were collected to develop an archetype library. The building heating energy consumption was calculated by the UBEM tool-AutoBPS, which was then calibrated against annual metered data. A rapid UBEM calibration method was applied to achieve a percentage error of 2.7%. The calibrated models were then used to assess the impacts of climate change using four future weather datasets out of Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results showed a decrease of 22%-31% and 21%-29% for heating energy consumption, an increase of 113%-173% and 95%-144% for cooling energy consumption in the two neighborhoods by 2050. The average annual heating intensity dropped from 81 kWh/m 2 in the current typical climate to 57 kWh/m 2 in the SSP5-8.5, while the cooling intensity rose from 12 kWh/m 2 to 32 kWh/m 2. The overall envelope system upgrade reduced the average heating and cooling energy consumption by 41.7% and 18.6%, respectively, in the SSP scenarios. The spatial and temporal distribution of energy consumption change can provide valuable information for future urban energy planning against climate change.
  •  
9.
  • Ferdowsi, Parnian, et al. (författare)
  • Molecular Design of Efficient Organic D-A-pi-A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells
  • 2018
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 11:2, s. 494-502
  • Tidskriftsartikel (refereegranskat)abstract
    • A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor--bridge-acceptor (D-A-pi-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I-3(-)/I-, [Co(bpy)(3)](3+/2+) and [Cu(tmby)(2)](2+/+) (tmby=4,4,6,6-tetramethyl-2,2-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81% and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby)(2)](2+/+) reached 7.15%. The devices with [Co(bpy)(3)](3+/2+) and I-3(-)/I- electrolytes gave efficiencies of 5.22% and 6.14%, respectively. The lowest device performance with a [Co(bpy)(3)](3+/2+)-based electrolyte is attributed to increased charge recombination.
  •  
10.
  • Javanroodi, Kavan, et al. (författare)
  • Designing climate resilient energy systems in complex urban areas considering urban morphology : A technical review
  • 2023
  • Ingår i: Advances in Applied Energy. - 2666-7924. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • The urban energy infrastructure is facing a rising number of challenges due to climate change and rapid urbanization. In particular, the link between urban morphology and energy systems has become increasingly crucial as cities continue to expand and become more densely populated. Achieving climate neutrality adds another layer of complexity, highlighting the need to address this relationship to develop effective strategies for sustainable urban energy infrastructure. The occurrence of extreme climate events can also trigger cascading failures in the system components, leading to long-lasting blackouts. This review paper thoroughly explores the challenges of incorporating urban morphology into energy system models through a comprehensive literature review and proposes a new framework to enhance the resilience of interconnected systems. The review emphasizes the need for integrated models to provide deeper insights into urban energy systems design and operation and addresses the cascading failures, interconnectivity, and compound impacts of climate change and urbanization on energy systems. It also explores emerging challenges and opportunities, including the requirement for high-quality data, utilization of big data, and integration of advanced technologies like artificial intelligence and machine learning in urban energy systems. The proposed framework integrates urban morphology classification, mesoscale and microscale climate data, and a design and operation process to consider the influence of urban morphology, climate variability, and extreme events. Given the prevalence of extreme climate events and the need for climate-resilient strategies, the study underscores the significance of improving energy system models to accommodate future climate variations while recognizing the interconnectivity within urban infrastructure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy