SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kawano Takafumi) "

Sökning: WFRF:(Kawano Takafumi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, Maxime, et al. (författare)
  • Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry
  • 2018
  • Ingår i: Nature Astronomy. - : Nature Publishing Group. - 2397-3366. ; 2:8, s. 652-655
  • Tidskriftsartikel (refereegranskat)abstract
    • Black hole binary (BHB) systems comprise a stellar-mass black hole and a closely orbiting companion star. Matter is transferred from the companion to the black hole, forming an accretion disk, corona and jet structures. The resulting release of gravitational energy leads to the emission of X-rays1. The radiation is affected by special/general relativistic effects, and can serve as a probe for the properties of the black hole and surrounding environment, if the accretion geometry is properly identified. Two competing models describe the disk–corona geometry for the hard spectral state of BHBs, based on spectral and timing measurements2,3. Measuring the polarization of hard X-rays reflected from the disk allows the geometry to be determined. The extent of the corona differs between the two models, affecting the strength of the relativistic effects (such as enhancement of the polarization fraction and rotation of the polarization angle). Here, we report observational results on the linear polarization of hard X-ray emission (19–181 keV) from a BHB, Cygnus X-14, in the hard state. The low polarization fraction, <8.6% (upper limit at a 90% confidence level), and the alignment of the polarization angle with the jet axis show that the dominant emission is not influenced by strong gravity. When considered together with existing spectral and timing data, our result reveals that the accretion corona is either an extended structure, or is located far from the black hole in the hard state of Cygnus X-1.
  •  
2.
  • Kole, Merlin, 1986-, et al. (författare)
  • A balloon-borne measurement of high latitude atmospheric neutrons using a licaf neutron detector
  • 2013
  • Ingår i: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). - : IEEE conference proceedings. - 9781479905348 ; , s. 6829591-
  • Konferensbidrag (refereegranskat)abstract
    • PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high radiation environments. Measurements of neutrons in two separate energy bands are achieved by placing one LiCAF detector inside a moderating polyethylene shield while the second detector remains unshielded. The PoGOLino instrument was launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A description of the detector design and read-out system is presented. A detailed set of simulations of the atmospheric neutron environment performed using both PLANETOCOSMICS and Geant4 will also be described. The comparison of the neutron flux measured during flight to predictions based on these simulations will be presented and the consequences for the PoGOLite background will be discussed.
  •  
3.
  • Kole, Merlin, et al. (författare)
  • PoGOLino : A scintillator-based balloon-borne neutron detector
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 770, s. 68-75
  • Tidskriftsartikel (refereegranskat)abstract
    • PoGOLino is a balloon borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors LhaL make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by [GO crystals for background reduction. The experiment was launched on March 20th 2013 from the [orange Space Centre, Northern Sweden (geomagnetic latitude of 65 degrees), for a three hour flight during which the instrument Look data up loan altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.
  •  
4.
  • Takahashi, Hiromitsu, et al. (författare)
  • Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The pathfinder flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy